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Robust classification of animal tracking data
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Abstract

This paper describes an application of the K-means classification algorithm to categorize animal tracking data into various classes
of behavior. It was found that, even without explicit consideration of biological factors, the clustering algorithm repeatably resolved
tracking data from cows into two groups corresponding to active and inactive periods. Furthermore, it is shown that this classification
is robust to a large range of data sampling intervals. An adaptive data sampling algorithm is suggested for improving the efficiency
of both energy and memory usage in animal tracking equipment.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The use of mobile sensors promises a data-rich future for the animal behavioral sciences. However, with large data
sets also comes the burden of data analysis and interpretation. In the future, the human analyst will rely on computational
techniques to meaningfully interpret large data sets and discover meaningful statistical trends. In this work we propose
one simple computational tool to help animal researchers interpret large data sets.

Specifically, we introduce the use of the K-means classification algorithm (Arabie et al., 1996) to classify animal
tracking data without a priori information into two categories. These categories are found to correspond to periods
of animal activity and inactivity. We use position and head angle data from several cows to demonstrate how this
algorithm could be employed in a behavioral study involving free-ranging animals. Furthermore, we investigate a
particularly useful property of this classification algorithm—its robustness with respect to data sample rates. This
robustness suggests that the classifier can be used to drive an adaptive sample rate data collection system, which will
have the potential to save energy without sacrificing the information content of the collected data. Robustness of the
algorithm to different sample rates is also demonstrated using cow tracking and head angle data.

We have not attempted to carry out a conclusive study of free-ranging cow activity and inactivity in this work, but,
rather, suggest a method in general terms and use cow data to demonstrate how the algorithm can be useful in a typical
animal behavioral study. It should also be noted that the applicability of the method is not tied to the specific example or
equipment described herein. The method can equally be employed to classify tracking data from any species, including
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humans, regardless of the tracking instrument used. Indeed, our broader research agenda is to develop computational
approaches for studying groups of various kinds of dynamical agents with social interactions. We expect that such
dynamical groups can be studied and modelled using physical data, and ultimately controlled.

1.1. Relationship to current state of knowledge

Several recent animal behavior studies have made use of automated data collection systems to allow for compu-
tationally intensive post-processing analysis (Butler et al., 2006; Bishop-Hurley et al., 2005; Anderson, 2001). An
interdisciplinary group at Princeton University has developed a network for monitoring the movements and social
groupings of Zebras in Kenya (Juang et al., 2002). Researchers at the University of California, San Diego have used
pattern recognition algorithms to identify and classify worm behavior (Geng et al., 2003). Statistical clustering tech-
niques have also been adapted to classify dolphin whistle calls (McCowan, 1995), and to identify animal aggregations
(Strauss, 2001).

More directly related to our work, some recent studies have been conducted to infer activity states of free-ranging
animals using global positioning system (GPS) tracking data. Ganskopp (2001) found that the Euclidean distance
between successive GPS fixes was not sufficient to infer cattle activity states using a regression analysis. Schlecht et
al. (2004) compared classification results from human observers with those found from discriminant analysis of GPS
data and found that the two were in agreement for 71% of the data. This work required an initial calibration step using a
portion of the collected data to manually select discriminants that were then used to classify the remainder of the data.
Finally, Ungar et al. (2005) used GPS position and acceleration data from cattle to infer states of activity. They found
that discriminant analysis classification agreed with human observation for at least 74% of the data while regression
tree classification agreed with human observation for at least 84% of the data. The K-means algorithm discussed in
this paper differs from the above statistical methods in that it performs classification in a highly autonomous fashion.
In particular it requires only minimal data preparation and does not require an off-line calibration step, nor does it
require the human analyst to pre-select suitable discriminants on which to base a regression model. In the machine
learning community, K-means is considered a simple example of an unsupervised learning algorithm, whereas the
above methods would be considered supervised algorithms (Duda et al., 2001).

This research points toward a potential application of the K-means algorithm to help ease power and memory
requirements for data collection equipment. Current research has identified the difficulty of balancing data resolution
with technical limitations, particularly on-animal power and memory requirements (Anderson, 2006). In order to mit-
igate power and memory constraints, most commercial on-animal GPS devices are restricted to a maximum position
recording rate of once every 5 min (this trend is changing, however (Clark et al., 2006)). This rather infrequent data
acquisition rate may cause significant amounts of information about landscape utilization to be missed, especially
during foraging (Schlecht et al., 2004) and possibly even during non-foraging travel (Estevez and Christian, 2005).
This is a problem of critical importance since most current animal behavior rangeland research is focused on under-
standing animal distribution in order to accurately characterize landscape utilization and ultimately manage utilization
(Anderson, 2006; Bailey, 2005; DelCurto et al., 2005; Bailey, 2004; Bailey et al., 2001; Hulbert and French, 2001;
Turner et al., 2000; Coppolillo, 2000; Bailey et al., 1996; Coughenour, 1991; Pinchak et al., 1991; Roath and Krueger,
1982).

Thus, choosing an appropriate data sampling rate appears to be a principle factor in understanding free-ranging
animal behavior. This highlights the advantage of creating a data collection system that has an adaptive sample rate. With
such a system, data may be collected infrequently during periods for which high sample rates do not help to determine
land utilization, while data can be sampled more frequently during periods that are more critical to understanding land
utilization. The results of this paper suggest that the K-means algorithm would be well suited to trigger a change in
data sample rates in such a data collection system because its classification qualities are insensitive to sample rates.

2. Methods

Our technical approach was as follows: (1) data from several free-ranging cows were collected; (2) data were then
analyzed using the K-means algorithm to classify animal behavior into active and inactive states; (3) biological factors
associated with activity and inactivity were compared with the autonomous classification to determine if the categories
corresponded with actual periods of activity and inactivity; (4) the effects of decreasing sample rates on the resulting
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sampled path was investigated for active and inactive states; (5) the effects of decreasing sample rates on the K-means
classification algorithm was investigated for active and inactive states.

2.1. Tracking data

2.1.1. Data collection location
Free-ranging cow data were collected in a 466 ha (l103 ac) area (Paddock 10B), on the U.S. Department of Agricul-

ture, Agricultural Research Service’s (USDA-ARS), Jornada Experimental Range (JER). This site has an undulating
topography of predominantly sandy soil with a mean elevation of 1260 m (4134 ft) above sea level(106◦43.263′′W,
32◦34.297′′N) located approximately 37 km (23 mi) north of Las Cruces, NM. The climate of the region is typical of
arid rangeland having a long-term mean precipitation approaching 230 mm (9.1 in.) with 52% occurring between July
and September. Mean maximum ambient air temperatures vary from a high of 36 ◦C (96.8 ◦F) in June to below 13 ◦C
(55.4 ◦F) in January.

The major grass species found in Paddock 10B are Bouteloua eriopoda (Torr.) Torr., Sporobolus flexuosus (Thurb.)
Ryudb. and Aristida purpurea Steud. Shrubs include Prosopis juliflora var glandulosa (Torr.) Cock, Yucca elata
Engelm. and Gutierrezia sarothrae (Pursh) Britt. + Rusky. The few low-lying areas with heavier soils are dominated
by Scleropogon brevifolious Phil, and Sporobolus airoides (Torr.) Torr.

2.1.2. The animals
Three free-ranging mature beef cattle of Hereford and Hereford × Brangus genetics, labeled Cow 1, Cow 2, and

Cow 3, were monitored during two periods in 2004. Data were collected in 2004 beginning April 26 at 17:12 h through
April 28 at 08:55 h (Trial 1), and again from May 17 at 12:50 h through May 19 at 07:44 h (Trial 2). During these
intervals, uncorrected global positioning system (GPS) data were recorded with Directional Virtual Fence (DVFTM)
devices capable of providing sensory cues to alter the animal’s direction of movement on the landscape (Anderson,
2006; Anderson et al., 2004; Anderson and Hale, 2001; Anderson, 2001). However, during these two trials, the animals
received no cues from the DVFTM devices.

The data included date, time, Universal Transverse Mercator (UTM) location together with the horizontal and vertical
angle of the animal’s head. Head angles were measured in degrees from a reference position corresponding to the head
being level with the animal’s backbone while looking straight ahead. A downward tilted head angle was denoted as
negative and an upward tilted head angle positive. Similarly, a left tilting head angle was denoted as negative while a
right tilting head angle was positive. Head angles can be indicative of certain kinds of behavior. For instance, while
foraging, the cow’s head is likely to be angled downward toward the ground and while resting it is likely to be looking
straight ahead or elsewhere (Anderson, 2006). An electronic magnetometer within the DVFTM device provided these
head angle measurements. During Trial 2, the instrument worn by Cow 1 broke leaving a total of only five complete
data sets from Trial 1 and Trial 2 upon which these analyses were made.

For each trial, data consisted of approximately 3000 entries for each cow collected at intervals alternating between
43 and 53 s, with some additional sampling irregularities. Data points that located the animal outside of the paddock
fences were removed manually as obvious outliers, however, no other data processing was carried out beyond what is
stated explicitly below.

2.2. The K-means classifier

The K-means algorithm was used to classify each animal’s data into two categories without using a priori informa-
tion. The resulting categories were examined and were determined to correspond to clearly defined periods of activity
and inactivity. The algorithm was applied with the intention of testing the simplest possible approach, thus special
considerations were not made to filter out inherent GPS measurement noise.

Specifically, we used the K-means classification algorithm to group the data into two categories. The classification
was performed over three dimensions of the collected data: speed, horizontal head angle, and vertical head angle. The
speed was calculated from a numerical differentiation according to the formula:

sk = ‖xk+1 − xk‖
tk+1 − tk

(1)
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where s is the speed in m/s, x the GPS position vector, t the time stamp from the on board clock, k indicates the data index
number and ‖·‖ denotes the Euclidean distance. The horizontal and vertical head angles, θh and θv, respectively, were
collected directly from the DVFTM. We note that time of day was not considered in this analysis, nor was temporal
auto-correlation of the data, that is, all data points for a single cow are simply put into a set for the calculations
irrespective of their temporal separation from one another. Our intention was to determine what clusters could be found
in the data using the most naive possible approach.

Before being used for classification, the data were normalized by subtracting the mean from each dimension, s, θh,
and θv, and dividing each dimension by its standard deviation, In particular:

zk = yk − μ√
(1/k)

∑
k(yk − μ)2

, (2)

where μ = (1/k)
∑

kyk is the mean, y represents the dimension, and z represents the dimension after normalization.
This standard procedure was used to remove effects from constant offsets and scaling. Each data entry was arranged
as a vector vi = [si θhi

θvi ], and the resulting normalized data vectors were used for classification.

Algorithm 1: K-means classification

Require: Initial mean positions, μj, j = 1, . . ., K
Require: A norm, ‖·‖, by which to measure the distance between any two data vectors
Require: A desired final tolerance, e, for the means
repeat

Group each data vector with its closest mean (the one for which
∥∥vi − μj

∥∥ is smallest)
Compute the centroid of each group according to (1/nj)

∑
Nj

vi, where Nj is the set of indices and nj is the size of the group

Take these new centroids as the new mean positions μj

until
∥∥μnew

j − μold
j

∥∥ < e for all j = 1, . . ., K

The K-means algorithm was carried out using the Euclidean norm with each dimension equally weighted. The
algorithm is listed here as Algorithm 1. This algorithm is guaranteed to stop for arbitrarily small e values. Unfortunately,
the final mean positions and resulting groupings are known to be sensitive to the initial mean positions chosen by the
user. A more elaborate discussion of K-means and other classification methods can be found in Aldenderfer and
Blashfield (1984), Arabie et al. (1996), and the original presentation of the algorithm is given in McQueen (1967). The
algorithm was carried out as described above independently on the data for each individual cow.

3. Results

K-means repeatably produced two clusters from the data sets, clearly delineated into a category with low speed
and high head angle, which we call inactive, and one with high speed and low head angle, which we call active. The
classifier identifies the horizontal head angle (right versus left) as being inconsequential to the classes. Classification
results for the three cows during Trial 1 are shown in Figs. 1 and 2, and results for the two cows in Trial 2 are shown
in Figs. 3 and 4. Note that the classification is cohesive among periods of time. That is, adjacent data points were
very likely to be in the same category despite the inherent random GPS position errors in the data. Thus the algorithm
appears to be sufficiently robust with respect to random position errors and is not hindered by the fact that temporal
relationships between successive data points were not used in the input to the classifier. Also, note that the periods of
activity and inactivity are similar for all animals within the same trial. The classification was carried out independently
for each animal, thus the classifier has no knowledge of the context of the experiment nor of the location of one cow
relative to another. Therefore, the correlations that exist among animals serve a means of validating our results. This
interpretation suggests that the classifier has identified biologically relevant behavioral categories, since activity levels
within a group of gregarious animals mutually influence one another (Smith, 1998; Immelmann and Beer, 1989).

To further investigate whether or not the active and inactive states identified by the classifier were biologically
relevant, we compared statistics reflecting aggregation behavior within the two categories. In particular, the mean
distance from each cow to the herd centroid and its standard deviation show that the animals were significantly and
reliably closer together during periods of common inactivity than during activity. These data are shown in Fig. 5. The
clear difference in the placement and activity of the herd during these periods gives evidence that the classifier has
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Fig. 1. K-means classification results are shown for the head angles of the three cows over the course of Trial 1. The class shown by solid dots is
interpreted as the active category, while the class shown by open circles is interpreted as the inactive category. Class means are shown by a solid
“×”. The active category has a lower vertical head angle than the inactive category on average, suggesting foraging behavior. The data for Cow 3
indicate that the collar worn by the animal was approximately 15◦ off center from the animal’s spine.

identified relevant biological states. Again, we stress that the classifier worked independently upon data from each
cow.

3.1. The problem of validation

There are often subtle problems associated with using automated statistical processing techniques. Janik (1999)
showed that humans presented with the task of classifying dolphin whistles produced far more uniform classifications

Fig. 2. K-means classification results are shown for the speed of three cows during Trial 1. The class shown by solid dots is interpreted as the active
category, having a higher mean speed, while the class shown by open circles is interpreted as the inactive category. Class means are shown by a
dotted line.
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Fig. 3. K-means classification results are shown for the head angles of the two cows over the course of Trial 2. Data for Cow 1 is unavailable as the
device failed during the trial. The class shown by solid dots is interpreted as the active category, while the class shown by open circles is interpreted
as the inactive category. Class means are shown by a solid “×”. The active category has a lower vertical head angle than the inactive category on
average, suggesting foraging behavior. The data for Cow 2 indicate that the collar worn by the animal was approximately 12◦ off center from the
animal’s spine.

than clustering algorithms presented with the same data. Caution must be exercised in the application of such algorithms
to make sure that results are not sensitive to arbitrary or insignificant factors. On the other hand, some findings suggest
that discrepancies between human and statistical classification methods are more likely due to human error (Rutter et
al., 1997). Indeed, the “true” activity state of an animal is not a precisely defined concept.

In this work we have deliberately avoided attempts to define a “true” activity state by not comparing the classification
results with results from human observers. Instead, we appeal to the clear differentiation of similar categories among
different animals and different time periods produced by the algorithm. When we use the term “active class” we
specifically mean that class defined by the unsupervised classifier, which has a relatively high mean rate of travel. Thus
we are not seeking in this work to confirm the classification results with human observation, but to demonstrate the
regularity of the K-means classifier as an autonomous agent. Indeed, our proposed application of the algorithm as a
trigger for adaptive data sampling is not concerned with maintaining fidelity to human classification, but rather, with
determining when it is safe to use a low sample rate verses a high sample rate-likely a task for which a human observer
would not be well suited.

3.2. Changing sample intervals

Next, the effect of changing sampling intervals during inactive and active periods was investigated. We developed
an intuitive measure by which to quantify the loss of information when sampling the same cow path at different sample

Fig. 4. K-means classification results are shown for the speed of two cows during Trial 2. The class shown by solid dots is interpreted as the active
category, having a higher mean speed, while the class shown by open circles is interpreted as the inactive category. Class means are shown by a
dotted line.
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Fig. 5. The mean distance and standard deviation of each cow from the herd centroid is shown for Trial 1 during the two categories identified by
the K-means classifier. Class 1 is interpreted as active, while Class 2 is interpreted as inactive. The significant difference between the two categories
suggests that the activity states identified by the classifier are biologically relevant.

rates. Namely, for a given path Xs with high sample frequency, we regularly subsample it (i.e. taking every nth data
point, for increasing values of n) to produce a low frequency data set Xl. Then, for each data point, Xs

k, we measure
how accurately it would be approximated by Xl. This is done by linearly interpolating Xl at the time of Xs

k to get an
estimated point Xl

k and measuring the Euclidean distance
∥∥Xs

k − Xl
k

∥∥. These distances are then averaged over the
length of Xs to determine the overall loss of path information in X1. This analysis is shown in schematic form in Fig. 6.

Note that this measure is in no way related to the literal distance covered by a path. It is, however, closely related
to the tortuosity of a path. A more tortuous path will suffer a greater loss of information when it is subsampled. Thus

Fig. 6. A schematic depicting the procedure used for calculating path error for paths with data points removed. The solid dots indicate positions
sampled, the open circles indicate interpolated positions for which no sample was taken, and the dotted lines show the distances between a recorded
data point on the true path and the point obtained from interpolation on the subsampled path. The path error is the mean of all such lengths over a
total path.
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Fig. 7. The path error is shown as a function of sampling frequency. The error metric used is described in Fig. 6. The path error for inactive and
active periods are given by the dotted and solid lines, respectively. The plot suggests that during inactive periods, a relatively low sample rate can
be used without introducing path error, while for active periods, a relatively high sample rate is required to accurately resolve an animal’s path.

the measure described above will have a steep increase as a function of sample rate for a tortuous path. Conversely, a
perfectly straight path will suffer no loss of information from subsampling as long as we keep at least two data points
from the path. Thus the measure described above will have a flat slope as a function of sample rate for a perfectly
straight path.

For the data collected in this study, the actual sample interval alternates between 43 and 53 s per data entry. This was
used as the baseline path Xs for comparison, with increasing fractions of the data points removed from the baseline data
set to simulate the effect of increasingly longer sample times. For each segment of the subsampled path X1 the distance
error was assigned to one of two tallies, depending on the classification of the two nearest points in Xs. That is, if both
subsampled points were classified as active, the distance error along the segment was added to the total error for active
points, and likewise for inactive points. The distance measures were then averaged over all cows in Trial 1 to produce
Fig. 7, which shows the path error for increasing sample intervals for both an inactive (dashed line) and active (solid
line) path. The figure demonstrates that for an inactive path little information is lost by using a comparatively long
sample interval, while for an active path the information about the path depends strongly on the sample rate. This can
be seen more directly in Figs. 8 and 9, which show the appearance of representative sections of inactive and active paths
with increasing sample intervals. Clearly the inactive path changes minimally, in fact it appears almost as a stationary
dot, while the change to the active path is more severe. The measure of path information loss, calculated as described
above, is displayed on each plot. The figures suggest that during active periods, samples should be taken frequently,
perhaps on the order of once per minute or more, to sufficiently capture the animal’s activity. During inactive times,
sample periods can be significantly longer without loss of resolution. A wealth of field research supports this finding
(Ganskopp, 2001; Schlecht et al., 2004; Estevez and Christian, 2005).

The effect of increasing sample rates on the classification results was also investigated. The original input to K-means
was subsampled similarly to the path error study by retaining every nth data point, for increasing values of n. Note
that the data are not exactly the same, as the speed value used for classification is not inherent in the tracking data, but
rather calculated based on the difference in position between consecutive readings, as in (1). Thus, in the subsampled
data, the speed is recalculated based on the data points in the smaller set. We then examined the changes in the clusters
produced as the data set was increasingly more coarsely sampled. Fig. 10 shows the Euclidean distance between the
final mean values of the clusters and the means produced by the full data set as the sample interval was increased. This
is significant because the location of the final mean values define the characteristics of the two classes identified by
the classifier. The figure shows that errors in the mean positions are minor for sample intervals up to 20 times as long
as the original sample interval (about 16 min between each sample). Figs. 11 and 12 show directly the classification
results of various time intervals. It is evident that despite the increasingly sparse data, the final categories found by
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Fig. 8. An inactive path segment sampled at different frequencies. Data are from Cow 1, Trial 1, April 27, 2004, 02:12–04:52. The cow moved so
little during inactivity that the path appears as a dot. It is clear that the path does not change appreciably with increasing sample intervals.

Fig. 9. An active path segment sampled at different frequencies. Data are from Cow 1, Trial 1, April 27, 2004, 05:24–07:35. It is clear that increasing
sample intervals causes significant path information to be lost.

the classifier are similar. Additionally, the reliability of the classification degrades gradually as sampling intervals are
increased beyond 20 times the original interval.

4. Discussion

4.1. Biological significance

The most important biological reason to understand how animals use landscapes will be to prevent over and under
utilization, and to understand how animal utilization of rangeland can provide proactive information for implementing
management practices (Heitschmidt and Taylor, 1991). Proper utilization remains the second biggest challenge in
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Fig. 10. The change in class means are shown as sampling interval is increased. Original mean refers to the class means computed from all data
points; distance is a dimensionless quantity in the normalized space of the classification. The change in means for the active and inactive classes are
given by the dotted and solid line, respectively. Notice that the class means change insignificantly for data sets with only 5% of the original data (20
points removed between samples).

the management of free-ranging herbivores (Holechek et al., 1998). By taking data at the optimal sampling rate for
free-ranging herbivory based on different activity states, we will have at our disposal the information necessary to
make informed proactive management decisions. This will especially be true when virtual fencing (Anderson, 2006)
becomes commercially available, making real-time management possible.

The analysis developed in this paper can classify location data into two coarse categories, active and inactive.
When these data are combined with other biotic as well as abiotic information about the landscape, we would expect
finer grained categorizations of behavior to be possible with this algorithm. The classification approach used here was
intentionally made without using any a priori biological knowledge. The fact that biologically relevant categories, i.e.
periods of activity and inactivity, were produced is encouraging. Furthermore, the duration and frequency of the active
category appears to agree with periods of activity previously reported for cattle (Wagnon, 1963; Squires, 1981; Arnold
and Dudzinski, 1978).

Fig. 11. Classifier results are shown for the head angles of Cow 1 during Trial 1 with increasing sample intervals. The class shown by solid dots is
interpreted as the active category, while that shown by open circles is interpreted as the inactive category. Class means are shown by a solid “×”.
Notice that the classes and mean locations change little despite a significant decrease in the amount of data used for classification.
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Fig. 12. Classifier results are shown for the speeds of Cow 1 during Trial 1 with increasing sample intervals. The class shown by solid dots is
interpreted as the active category, while the class shown by open circles is interpreted as the inactive category. Class means are shown by a dotted
line. Notice that the classes and mean locations change little despite a significant decrease in the amount of data used for classification.

In addition, similar analysis for the data obtained during a trial for which the animals received cues from the DVFTM

device Anderson (2006) show similar categories of behavior (see Fig. 13). This indicates that the presence of cuing does
not significantly alter the results of classification. We present these as preliminary results for data classification during
cuing, since more thorough investigation is required. However, these results suggest that a classification algorithm
could be used with a virtual fencing system in the future.

Fig. 13. Classification for a data set in which Cow 3 experienced Directional Virtual Fencing (DVFTM) cuing is shown. The class depicted with
solid dots is interpreted as the active category, while the class depicted with open circles is interpreted as the inactive category. Data points for which
cuing was administered by sound, electric stimulation, or both are indicated by bold open circles. The results suggest cuing does not significantly
affect the clear definition of an active and inactive category. Also notice that cuing occurs almost exclusively during periods of activity, as would be
expected. The few points in the inactive category for which cuing was administered were categorized incorrectly.
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We expect that incorporating additional biological knowledge into the algorithm will enable the computation of
finer-grained classification and more complete real-time understanding of the animals’ behavior. For example, it is clear
that biotic and abiotic landscape parameters (density of forage, topography, wind speed and direction, etc.) affect cattle
(Hafez and Bouissou, 1975; Squires, 1981). By adding these dimensions to our data set, we may be able to evaluate how
activity varies in a correlated way with landscape parameters. Besides individual behavior, we are also interested in the
relative positions of the animals and the movement of the herd. Including this information in a classification algorithm
could lead to intraspecial, as well as interspecial, animal behavior models to characterize how animal behavior changes
as a function of neighbor proximity and herd dispersion or aggregation.

4.2. Other data collection devices

Previous GPS-based animal behavioral research projects have used both modified and off-the-shelf GPS units. For
instance, Schlecht et al. (2004) used customized backpacks with modified GPS units which recorded animal positions
every 10 s, while Ungar et al. (2005) used commercially available LotekTM2000 and 2200LR collars that logged data at
20 and 5 min intervals, respectively, combined with on-collar accelerometer measurements to aid in classification. Our
data were collected from DVFTM devices (Anderson, 2006), which are not yet commercially available. This breadth
of devices and sample intervals used for collecting data raises the question of whether or not the devices themselves
may influence the results of studies.

Our analysis of path lengths above attempts to addresses this question. It is always advantageous to collect data as
frequently as possible. Statistically, more frequent data sampling can only improve the fidelity of an analysis. Thus
data collection rates ought to be limited only by device energy and memory restrictions ultimately imposed by cost
constraints. It would seem that logging data at 10 s intervals is sufficient to capture the most erratic of cow paths with
great detail (Schlecht et al., 2004), however energy and memory would be wasted on periods during which the animal
is inactive. Conversely, logging data every 20 min (Ungar et al., 2005) will lose much fine-grained information about
a cow’s path, but will give devices a long lifetime in the field. The researcher ought to collect data at a resolution
appropriate for the objectives of the study. In any case, the K-means algorithm has been shown above to be insensitive
to sample rates, thus it can be used safely with any reasonable data collection device to classify activity levels.

4.3. Adaptive sampling

The robustness of the K-means algorithm to sample rates ranging from once per minute (or less) to once every
16 min suggests that the K-means algorithm can be used to drive a variable sample interval data collection device—one
which records samples at a high frequency during periods of activity and records at a lower frequency during periods
of inactivity. The results show that during inactive periods there is little benefit to a high sample rate, while during
active periods a high sample rate is required to resolve important properties of an animal’s path.

From an engineering point of view, these results suggest guidelines for animal device design as well as experiment
design. Both memory and power could be used more efficiently if the data collecting device were able to change its
sample rate given the activity state of the animal. Fortunately, the K-means classifier has an on-line variant, which can
be used to classify data as it is obtained. The identified category of the incoming data can then be used to dictate the
future sample rate at which data will be recorded. Such an adaptive sampling algorithm could provide significant gains
in over-all device lifetime.

5. Conclusion

The K-means classification algorithm was used to cluster GPS tracking data obtained from mature cows into two
categories representing activity and inactivity. We found that the categories computed by the algorithm were consistent
among animals within a trial for two different trials. These results do not address questions about cattle behavior at
large, but, rather, demonstrate that the K-means algorithm can be useful in determining animal activity states in an
autonomous way. This research also suggests that a sufficiently high data sampling rate is important for characterizing
land utilization by cattle during periods of activity, while sample rate is not important during periods of inactivity. Lastly
we have demonstrated that K-means classification is robust with respect to sample intervals of various length. These
results suggest that an on-line K-means algorithm can be used to identify between periods of activity and inactivity
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and subsequently adjust the data sampling rate accordingly. Such an adaptive sampling scheme will provide improved
resolution while conserving memory and energy in future data collection devices.
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