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bstract

The ability to distinguish among diets fed to Damascus goats using excitation–emission luminescence spectra was investigated. These diets
onsisted of Medicago sativa L. (alfalfa), Trifolium spp. (clover), Pistacia lentiscus, Phyllirea latifolia and Pinus brutia. The three-dimensional
uminescence response surface from phosphate buffered saline (PBS) extracts of each material was analyzed using muti-way analysis chemometric
ools (MPCA) and parallel factor analysis (PARAFAC). Using three principal components, the spectra from each diet material were distinguished.
dditionally, fecal samples from goats fed diets of either alfalfa or clover hays were investigated. The application of MPCA and PARAFAC to
hese samples using models derived from the pre-digested diet materials was strongly suggestive of the utility of similarly derive training samples
or the elucidation of botanical diet composition for animals.

2007 Elsevier B.V. All rights reserved.
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. Introduction

In the Mediterranean region, goats are very important for
rush control and ecological management [1]. The need to
ifferentiate among goat diets is indeed a necessary issue for
ontrolling free-ranging goats [2,3].

Fluorescence spectroscopy shows promise as a rapid and
ccurate method for identifying plant materials [4–7]. Earlier
tudies [5,6] used chloroform as the extracting solvent. Unfortu-
ately, this solvent revealed fluorophores throughout the visible
egion of the spectrum including red chlorophyll fluorescence
8]. However, blue fluorescence from leaf material of higher

lants has been suggested to result from a complex mixture
f at least three fluorescing components [9]. Lichtenthaler et
l. [10] later indicated the phenolic epidermal compounds in
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eaves (including cafferic, ferulic and sinapic acids as well as
hlorogenic acid and quinic acid) may contribute to fluorescence
n the blue region of the visible spectrum [10]. Additionally
reen fluorescence has been attributed to the cell wall com-
onents berberine and quercetin [11], epidermal tissue [12]
nd mesophyll tissue [13]. Although blue and green fluores-
ence result from multiple components [10], their chemical
rigins and locations within plants, are yet to be fully under-
tood [14]. It may, however, be possible to differentiate among
lant materials without a detailed understanding of the molecu-
ar species responsible for the resulting fluorescence signatures
5,6].

Recent research by Danielson et al. [15] suggested phos-
hate buffered saline (PBS) solutions as suitable solvents for
xtracting non-chlorophyll fluorophores from plant material.

he exclusion of chlorophylls enabled a reduction of the mask-

ng of blue and green fluorescence signatures. Other work in our
aboratories has also demonstrated the utility of some chemo-

etric tools (e.g., principal component analysis (PCA) and

mailto:garayson@nmsu.edu
dx.doi.org/10.1016/j.talanta.2006.11.045
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ulti-way PCA) for the qualitative processing of luminescence
pectra from PBS plant extracts [3].

The aim of the present study was to investigate the ability
o differentiate among five different goat diets using fluores-
ence excitation–emission matrix (EEM) spectra of PBS extract
olutions by applying multi-way principal component analysis
MPCA). Additionally, an MPCA calibration model was con-
tructed from diets containing each of two hay species (i.e.,
lfalfa and clover) in an attempt to identify feces collected from
ifferent goats fed each diet. The number of the possible flu-
rophores in each of the five diets was also investigated using
arallel factor analysis (PARAFAC).

. Experimental

.1. Samples

Five pre-dried goat diet materials were investigated using
pectral fluorescence analysis. These included two hay plant
pecies, alfalfa (Medicago sativa L.) and clover (Trifolium spp.)
nd gree browse species, Pistacia lentiscus (P. lentiscus), Phyl-
irea latifolia (P. latifolia) and Pinus brutia (P. brutia). Feces
amples of both alfalfa and clover were also investigated using
he same technique. These materials were obtained from the
gricultural Research Organization of Israel. The composi-

ion of samples used in this study resulted from the actual
iets of each of 12 Damascus yearling goats (mean weight of
8.5 ± 0.7 kg) at a feed study facility located south of the Carmel
idge, Israel. This feed study involved feeding 10 goats alfalfa
ay (samples 1–10 in Fig. 3) for 10 days and collecting the cor-
esponding feces. Additionally, clover hay (samples 11–14 in
ig. 3) was fed to four goats for a period of 4 days with similar
ollection of the corresponding feces. Goat feces from both hay
iets were similarly coded with the corresponding goat identi-
cation (Table 1). Other pure diet materials were added to this
tudy to check the ability of the current technique to differenti-

te among different diet materials: and P. latifolia and P. brutia
15–17 and 18–20 in Fig. 3, respectively) and P. lentiscus (21–24
n Fig. 3). The facility consisted of roofed individual dirt-floor
ens (1.7 m × 1.7 m) and a roofed collection corral where ani-

able 1
he identity of samples and goats

ample number Diet Goat ID

1 Alfalfa G
2 Alfalfa A
3 Alfalfa F
4 Alfalfa I
5 Alfalfa K (Missing)
6 Alfalfa E
7 Alfalfa D (Missing)
8 Alfalfa H
9 Alfalfa J
0 Alfalfa B
1 Clover C
2 Clover B
3 Clover M
4 Clover F
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als were placed between tests. Each pen was configured with
15 l water bucket and a trough divided into two compartments

or separation of the feed concentrate and the other materials pre-
ented to each animal. For more accurate intake measurements
ollection of residue of each material was facilitated by a shelf
ocated beneath each trough. Diets were weighed and distributed
nce each morning during 12, 10-day tests. Fecal samples for
lfalfa and clover were grab-collected each morning, midday
nd evening to minimize variance from digestive stages during
ach of the final five days [16,17].

.1.1. Sample preparation
Diet and feces materials were initially ground to pass a 2 mm

creen, placed in aluminum weighing boats and dried at 60◦ C
or 24 h to constant mass. Three replicates of approximately
.1500 g of each diet material as well as feces were weighed
nto separate borosilicate culture tubes (16 mm × 25 mm, Kim-
le Kontes, Vineland, NJ). The tubes were then sealed using
arafilm and stored at room temperature. All samples within
ach replicate sample set were randomized prior to analysis to
inimize operator bias during data collection.
The phosphate buffered saline solution was autoclaved

35 min at 121 ◦C, 125 kPa) to minimize any microbial contami-
ation. The solution pH was adjusted to 12.5 using 1.0 M NaOH
Mallinckrodt Chemical Works, Saint Louis, MO). Each 2 l vol-
me of the PBS solution contained 0.263 g, NaN3 (sodium azide,
n additional microbial growth inhibitor), 1.422 g NaHPO4,
.801 Na2HPO4 (Alfa Aesar, Ward Hill, MA), 0.408 g KCl
Sigma, MO) and 13.567 g NaCl (J.T. Baker, Phillipsburg, NJ)
issolved in ultra-pure (18.0 M�) water.

Each replicate data set consisted of spectra from each of
he five diet materials, fecal materials, three extraction solution
lanks and a single solution consisting of a TiO2 suspension. The
pectrum of each blank was recorded at three times during the
nalysis of each replicate: the beginning, middle and end. The
pectrum from the TiO2 suspension solution was also collected
hree times during each replicate to account for any instrument
rift. A total of 13 samples including the blanks and the TiO2
olutions were run each day (a single replicate data set).

The incorporation of the light scattering suspension of
iO2(s) provided a signal indicative of the wavelength-
ependent intensity of the incident radiation. This enabled
ompensation for significant drifts in the output of the
e-arc lamp excitation light source. Immediately follow-

ng exposure of the TiO2 sample, a blank spectrum was
ecorded.

A Lab Industries Repipet II (Barnstead/Thermolyne,
ubuque, IA), was calibrated to deliver 10.0 ml of extraction

olution to each culture tube containing the diet and the fecal
aterials. Once filled, all 10 tubes were sealed with Parafilm

nd manually shaken. The tubes were shaken in an attempt to
et the “plug” of ground plant material that floated in each cul-

ure tube. These tubes were then agitated using an orbital shaker

VWR Model 98001;Albuquerque, New Mexico) at 100 RPM
or 1 h. The culture tube openings were elevated slightly to min-
mize contact of the culture tube contents with the Parafilm. The
ulture tubes were also rotated 180◦after 30 min to maximize
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ontact of the ground plant material with the PBS extraction
olution.

The culture tubes were then centrifuged at 925 × for 25 min
Beckman Model TJ-6, Labx, Midland, ON, Canada). The liquid
rom each culture tube was subsequently decanted into a non-
terile 10.0 ml syringe (Allometrics Inc., Franklin Lakes, NJ)
nd filtered through a 0.2 �m non-sterile nylon filter (Millex,
edford, MA). Approximately, 3 ml of filtrate was immediately
ollected in a 3.5 ml disposable acrylate fluorescence cell with
light path of 10 mm (Spectrocell, Oreland, PA). The cell was

hen capped (Spectrocell Teflon®, LDPE), placed within the flu-
rometer, and the resulting excitation–emission matrix collected
or all samples including both the diet and the fecal materi-
ls. These comprised 1024 emission intensity measurements
t each of 51 excitation wavelengths (370–580 nm in 4.2 nm
ncrements).

.2. The fluorometer

The fluorometer used in these studies [18–20], has been
reviously described by Mukherjee et al. [21]. Briefly, it con-
ists of a 150 watt Xe-arc lamp (Oriel Model 6254, Newport
riel Instruments, Stratford, CT) as an excitation source. Each
avelength of excitation was selected using an F/4, 1/8 m dou-
le monochromator with a bandwidth of 7 nm (CVI Model
20, CVI, Albuquerque, NM). Stray light was reduced using
band pass filter on the monochromator. Scattered light and

uorescence from the PBS filtrate were detected at 90 degrees
o the incident radiation. The emitted radiation was imaged
nto the entrance slit of an F/4, 1/8 m imaging spectrometer
ISA Jobin Yvon, Edison, NJ), with a 200–700 nm range. A
024-element intensified Reticon array (Model 1420, EG&G
rinceton Applied Research, Trenton, NJ) detected the light at

he image plane. The detection spectrometer had a 5 nm band-
ass.

.3. Data collection

Instrument control and data acquisition were accomplished
sing software developed using Lab View software (Version
.0, National Instruments, Austin, TX) installed in a Gateway
esk top PC equipped with a Pentium II processor. The spec-
ral intensities are reported on a relative intensity scale and were
lank corrected. Wavelength regions of the spectra were divided
n to arbitrary spectral regions and designated as either “blue”
424–491 nm) or “green” (491–575 nm) [22].

. Statistical analysis

.1. Multi-way principal component analysis (MPCA)

Chemometric data analysis methods provide powerful tools
o analyze multivariate data such as excitation–emission matri-

es obtained from fluorometry [23]. Principal component
nalysis and MPCA are multivariate statistical methods for ana-
yzing data measured as a function of two or more parameters
multi-way data) [24].

p
E
c
p
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MPCA is one of the most direct approaches for decomposing
he EEM [25]. Statistically and mathematically, MPCA is very
imilar to PCA and involves the generation of a representation of
he eigenvectors for the covariance or correlation matrix of the
riginal measured variable data matrix. There may be as many
igenvectors as there are variables. Each principal component
enerated describes diminishing contributions of the variance
mong the measured variables [25].

Consider the measurement of intensity at each jth (j = 1,. . .,
) emission wavelength for every kth excitation wavelength
k = 1,. . ., K) corresponding to the ith sample (i = 1,. . ., I). These
ata can be then be organized into a three-dimensional matrix
of dimension I × J × K. In MPCA, the unfolded matrix X is

ubsequently decomposed into a large two-dimensional matrix
(Fig. 1) followed by conventional PCA. Simply stated, MPCA

s the summation of the product of score vectors (tr) and loading
ectors (Pr) plus a residual or error array (E) which is minimized
n a least squares sense.

=
R∑

r=1

tr ⊗ P r + E (1)

ach element of score vectors (tr) corresponds to a particular data
et. The loading vectors (Pr) are then directions of a maximum
ariability and define the reduced dimension space (R).

In most cases, only few principal components can be used
o express the maximum variability especially in data with a
igh degree of correlation (R � min (I, JK)). The choice of R
s made for the optimization of the systematic variability of the
ata and can be described by these few principal components.
dditionally, the residual array (E) is minimized according to

he least squares sense [26].

.2. Parallel factor analysis (PARAFAC)

The PARAFAC is another powerful multi-way data anal-
sis tool that assumes a liner relationship between the
xcitation–emission wavelength pair. It was used to investigate
he number of factors (i.e., fluorophores) responsible for features
ithin each spectral signature.
Like MPCA, PARAFAC is an algorithm that decomposes

ulti-way dimensional arrays into a set of scores and loadings.
ecause PARAFAC is a constrained version of PCA, any data

et that can be modeled by PARAFAC can also be modeled by
CA [27].

Mathematically, the PARAFAC algorithm decomposes the
hree-dimensions data matrix (X) into a sum of triple product of
ectors (components or factors) and an error matrix e (Eq. (2)).
hile for PCA, each component consists of one score vector

nd one loading vector, each component (factor) in PARAFAC
onsists of one score vector and two loading vectors. These com-

onents or factors are organized into spectral matrices (i.e., a–c).
ach matrix represents a single dimension of the original data
ube containing N factors (N is the smallest number of inde-
endent factors that can be used to efficiently describe the data
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(λex,λem, material). These were subsequently processed using
both MPCA and weighted PARAFAC. Two-dimensional MPCA
models using either the first and second or the first and third
principal components were only able to separate the five diet
ig. 1. Unfolding of three-way array X (I, J, K) into a two-way array in MPCA
f triple product of vectors or loadings a–c, and error matrix E in PARAFAC.

ariances) (Fig. 1) [27–29].

ijk =
N∑

n=1

ainbjnckn + eijk (2)

n Eq. (2), Xijk is a three-dimensional data set (i.e., fluorescence
ntensity of sample k at excitation wavelength i and emission
avelength j), N the unique spectral profiles found in the data

ube, the n columns of matrix a are the predicted pure excitation
f the n factor, the n columns of b are the predicted pure emission
pectra of the n factor and the columns of c are the predicted pure
pectral intensity profiles of n factors and eijk is the error matrix.

. Results and discussion

No detectable degradation of the samples was observed over
he 3-day data collection period. Additionally, the different PBS
olution blanks were found not to differ statistically (P = 0.912).
herefore, the mean blank spectrum was subtracted from each
ample spectra prior to analysis using MPCA and PARAFAC
PLS-Toolbox, Eigenvector Research, operated under MatLab
.0.4, MathWorks, Natick, MA). The data were mean cen-
ered before applying MPCA. Prior to application of PARAFAC
he data were weighted to account for scattering signals and
runcated to contain only the regions of the spectra that had
ignificant fluorescence information (i.e., λem ≥ λex).

.1. Diet samples

Fig. 2 shows a typical excitation–emission luminescence
pectrum for a PBS extract of an alfalfa hay sample. The broad
ines with slopes of approximately 1.0, and 2.0 correspond to
he first and second order diffraction of the incident radiation
λ(emission) = λ(excitation)), respectively, that displays bloom-
ng into adjacent pixels. It is, therefore, the region located above
his first order Rayleigh scattered radiation that is of primary
nalytical utility (i.e., λ(emission) ≥ λ(excitation)). Because the

ayleigh scattering features are diagonal lines, studying the

egion above this scattering results in the loss of that portion
f the signal exhibiting an overlap with the Rayleigh scattering
29].

F
r
i
r

ts decomposition into a sum of vector or loading products, J and K. And a sum

Weighting of the data within each EEM by replacing the val-
es of the Rayleigh scattered signal pixels with zeros has been
roposed as an approach to address this problem [30]. This was
ccomplished by multiplying the data matrix by a weighting
atrix that has the same size as the data matrix in which the

egions of the matrix corresponding to the Rayleigh scattering
re given values of zero and values of one for the rest of the
atrix. Weighting the data for PARAFAC application has been

roposed as an approach to address the problem associated with
he presence of the Rayleigh scattering. For the application of
ARAFAC, the data were subjected to both a discrete weight-
ng strategy and truncation of the data sets to include only those
pectral regions containing useful signal [29].

The spectral signatures for each material were each recorded
everal times in accordance to the actual feed study for goats
escribed elsewhere [3]. A three-dimension data matrix con-
aining the EEM for each of the five materials was generated
ig. 2. Contour plot representation of excitation–emission matrix (EEM)
ecorded from the PBS extract of a sample of Medicago sativa L. (alfalfa) show-
ng both first and second order diffraction of the Rayleigh scattered incident
adiation.
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Fig. 3. Three-dimensional MPCA scores plot for each of the materials analyzed.
Each point represents a single spectrum acquired for each replicate from each diet
material, Medicago sativa (alfalfa) hay (samples 1–10), Trifolium spp. (clover)
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4.2. Fecal samples

Fecal samples from animals fed diets consisting of each of the
two forvs (alfalfa and clover hay) were similarly analyzed. The

Table 2
PARAFAC factors for each material with the locations of maxima in each
resulting excitation and emission profile

Species Number of
factors

Excitation
wavelength (nm)

Emission
wavelength (nm)

Alfalfa hay 1 465 520, 620
Phyllirea latifolia 1 480 550
Pistacia lentiscus 1 480 570

Pinus brutia 2
420

475
625

480
505
625
ay (samples 11–14), Phyllirea latifolia (samples 15–17) Pinus brutia (samples
8–20), Pistacia lentiscus (samples 21–24). Circles around each cluster are for
larity and do not represent confidence limits.

aterials into only four clusters, leaving the P. brutia samples
istributed among the other clusters. However, application of a
hree-dimensional MPCA model (Fig. 3) enabled more than 95%
f the total variation in the original data matrix to be accounted
or using three principal components. Projection of the scores for
ach sample spectrum yielded five separate, very well resolved
lusters (Fig. 3). Each of these five clusters represents one of
he diet materials. The centers of each of the five clusters were
alculated and the standard deviations of each point in each
luster from its pre-calculated centers were also calculated. The
veraged standard deviation for the clusters of alfalfa, clover, P.
entiscus, P. latifolia and P. brutia were 2.7, 1.3, 4.2, 3.0 and 2.9,
espectively. Despite the above variations, which might affect
he confidence limits of detection for the individual species, dis-
rimination among the plants species used is readily apparent.
hese results strongly suggest the ability of this technique to
iscriminate among the five diet materials used in this study.

For the purpose of identifying the possible number of
uorophores in each diet material and their corresponding
xcitation–emission profiles weighted PARAFAC was also
pplied on each of these five separate diet materials to inves-
igate the number of fluorophores associated in each of the five
lants. The number of factors for each model was determined
sing both the core consistency test along with visual inspection
28]. PARAFAC application was employed for the truncated data
atrices that have significant fluorescence signals. The studied

egions of the data matrices for all the samples included excita-
ion and emission boundaries of 415–565 nm and 450–710 nm,
espectively.

One or two factors were found among the five diet materials.
oth PARAFAC excitation and emission profiles for the five diet
aterials were investigated. Fig. 4 shows the excitation profiles

or each of the five diet materials. For samples such as alfalfa, P.

atifolia and P. lentiscus (Fig. 4a–c, respectively), one factor was
dentified. This suggests only one fluorophore in these materials
s responsible for the measured fluorescence. Fig. 6a–c show
he corresponding emission profiles for each factor. In alfalfa,

C

a 72 (2007) 682–690

he excitation–emission profile for the factor lies at an excita-
ion wavelength of 465 nm (Fig. 4a) and an emission wavelength
f 520 and 620 nm (Fig. 5a). However, the factor revealed for
. latifolia was observed to have different excitation–emission
rofile with excitation and emission wavelength maxima at 480
Fig. 4b) and 550 nm (Fig. 5b), respectively. The P. lentiscus
actor exhibited excitation–emission wavelengths of 480 and
70 nm (Figs. 5c and 6c, respectively). This result is consistent
ith the MPCA analysis above. Although only one factor was
bserved in alfalfa, P. latifolia and P. lentiscus, these factors
evealed different excitation–emission profiles, thus enabling
hem to be distinguished. This was also revealed in separate
lusters of alfalfa, P. latifolia and P. lentiscus in the space of the
PCA model (Fig. 2).
Two factors were found in the remaining materials

Figs. 5 and 6). However, the two factors in each of these sam-
les have unique excitation–emission profiles. Fig. 4d shows
he excitation profile of the two factors (blue and green) found
n P. brutia. The blue factor has an excitation maximum of
20 nm with corresponding emission maxima at 475 and 625 nm
Fig. 5d). Conversely, the green factor displayed an excitation
aximum at 480 nm (Fig. 4d) and emission maximum wave-

engths at 505 and 625 nm (Fig. 5d). The clover hay sample
lso revealed two factors. Fig. 4e shows the excitation pro-
le for these factors. The green has an excitation peak at
50 nm and emission maxima at 490 and 610 nm (Fig. 5e).
omparatively, the blue factor showed a peak excitation wave-

ength of 490 nm (Fig. 4e) and emission wavelength maxima
t 530 and 610 nm (Fig. 5e). Again this is consistent with
he MPCA analysis. Significant differences in the spectral
ignatures in these samples (Fig. 3) were indicated through
he clustering of each diet material samples in a separated
luster.

Table 2 summarizes the factor number for each of the studied
amples a long with the excitation–emission profile for each
actor.
lover hay 2
450

490
610

490
530
610
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ig. 4. Excitation profiles of PARAFAC model for diet samples of (a) Medicag
e) Trifolium spp. (cover) hay.

oal of this study was to provide preliminary data regarding the
otential application of chemometric models (i.e., MPCA and
ARAFAC) derived from diet materials and fecal material sam-
les for the determination of botanical diet materials a MPCA
odel was therefore constructed using PBS extracts of samples

f each of two diet materials species used in Fig. 3, alfalfa and

lover hay (circles in Fig. 6). (Availability of corresponding fecal
amples from animals fed only the single plant species limited
hese studies to these two-diet materials.) Then extracts from
eces collected from each of individual goats were applied to

f
m
a
c

iva (alfalfa), (b) Phyllicea latifolia, (c) Pistacia lentiscus, (d) Pinus brutia and

he above MPCA calibration model (triangles in Fig. 6). Read-
ly apparent are the segregation of spectra based on the plant
pecies for both diet and fecal samples (i.e., alfalfa hay versus
lover hay) and the similarities in the projection of spectra from
he pre- and post-digested samples of these same plants. Not sur-
risingly, the greatest distribution of projected points is observed

or spectra from fecal samples collected from the different ani-
als fed these diets. The cluster centers for both diet materials,

lfalfa and clover in this model were calculated as well as cluster
enters for the corresponding fecal samples. Then the maha-
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ig. 5. Emission profiles of PARAFAC model for diet samples of (a) Medicago
riffolium spp. (clover) hay.

anobis distance between the centers of diet materials clusters
nd the centers of the corresponding fecal samples clusters were
alculated. It was determined that the distance between the diet

aterial center of alfalfa and its corresponding fecal center was

3 units. Similarly the distance between the clover diet material
enter and the corresponding clover fecal samples center was
ve units. The distance between the centers of alfalfa diet mate-

f
f
t
t

(alfalfa), (b) Phyllirea latifolia, (c) Pistacia lentiscus, (d) Pinus brutia and (e)

ials and the fecal samples of clover was similarly calculated
nd found to equal 23 units. Additionally, the distance between
ach of the centers of clover diet material and the fecal samples

rom alfalfa was 18 units. This supports the visual interpretation
rom Fig. 6 which suggests the clustering of the same species
ogether for both diet and and fecal materials, independent of
he animal involved.
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Fig. 6. Three-dimensional MPCA scores plot for a model generated by spectra
from diet samples of Medicago sativa (alfalfa) hay (1–10) and Trifolium spp.
(clover) hay (11–14) (�) and the application of that same model to spectra from
fecal samples (�) collected from individual goats (letter code) fed those same
diets.

Fig. 7. Loadings from the PARAFAC model (excitation spectra) applied to fecal
samples corresponding to diets consisting of (a) Medicago sativa (alfalfa) hay
and (b) Trifolium spp. (clover) hay.
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To further investigate the source of variance among these
amples, and to investigate the possible number of fluorophores
esponsible for the spectral feature of each species in this
esearch PARAFAC was applied to spectra derived from the
eces of only animals fed each of these materials (i.e., alfalfa
nd clover hay). Comparison of the resulting PARAFAC profiles
excitation, Fig. 7 and emission, Fig. 8) for the pre- (Figs. 4 and 5)
nd the post-digested (Figs. 7 and 8) forms of alfalfa and clover
ay reveal good consistency.

Fig. 7a, shows that only one PARAFAC factor is responsible
or the spectrum in the post-digested form of alfalfa. The excita-
ion profile for the alfalfa fecal samples indicated a maximum at
50 nm (Fig. 7a) while that from the pre-digested form displayed
maximum at 465 nm (Fig. 4a). In contrast, the corresponding

mission profiles for both forms of alfalfa diet samples were
ery similar with maxima at 520 and 610 nm (Figs. 6e and 8b).

PARAFAC revealed each of two factors for the clover hay

blue and green curves) in the spectra for both pre- and post-
igested samples. The excitation profile for the fecal samples of
he clover hay (Fig. 8a) displayed a maximum at 445 nm com-
ared to 450 nm arising from a similar analysis of pre-digested

ig. 8. Loadings from the PARAFAC model (emission spectra) applied to fecal
amples corresponding to diets consisting of (a) Medicago sativa (alfalfa) hay
nd (b) Trifolium spp. (clover) hay.
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iet samples (Fig. 4e). The emission profile for the same factor
blue) indicated maxima at 480 and 610 nm (Fig. 8b) compared
o 490 and 610 nm (Fig. 5e). The second factor (green) revealed
peak at 490 nm in the excitation profile for the fecal extract

ample (Fig. 8a) with a maxima in the corresponding emission
rofiles at 550 and 610 nm (Fig. 8b). This is in comparison with
he corresponding excitation (Fig. 4e) and emission (Fig. 5e)
rofiles for the pre-digested diet samples that exhibited maxima
t 490 or 530 and 610 nm, respectively. The similarity and dif-
erences in these extracted spectra for the respective diet and
ecal samples may contribute to the observed projections of the
uminescence spectra using MPCA.

. Conclusion

Three-dimensional luminescence spectra from PBS extracts
f alfalfa and clover hay, and browse samples from the plants P.
entiscus, P. latifolia and P. brutia have been shown to enable
aterial identification. The application of MPCA enables a

ualitative identification of animal diet materials. Although the
olecular species responsible for the observed spectral signa-

ures is currently unknown, statistical models using PARAFAC
uggest the number of a possible fluorophores to vary between
alfalfa hay, P. lentiscus and P. brutia) and (P. latifolia, clover
ay). The excitation and emission profiles for the suggested flu-
rophres detected by PARAFAC are unique. This indicates that
he chemical source behind the observed fluorescence is not
he same among the current samples. However, in this research
uggests that digestion may not affect the fluorescence spec-
ral signatures significantly. This is clear after applying both

PCA and PARAFAC. The fecal samples continued to cluster
ery close to the diet material samples in the MPCA model that
as constructed from the diet materials only. This supports the
ypothesis that the spectral signatures for pre- and post-digested
amples (used in this study) were similar. The application of
hese spectroscopic and statistical tools to fecal samples suggests
he possible use of model learning sets derived from mixtures
f plant or diet materials for the identification of botanical com-
arition of animal diets. This aspect of the work is the focus of
ngoing research.
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