
Abstract
Decision tree analysis is a statistical approach for develop-
ing a rule base used for image classification. We developed
a unique approach using object-based rather than pixel-
based image information as input for a classification tree
for mapping arid land vegetation. A QuickBird satellite
image was segmented at four different scales, resulting in a
hierarchical network of image objects representing the image
information in different spatial resolutions. This allowed for
differentiation of individual shrubs at a fine scale and
delineation of broader vegetation classes at coarser scales.
Input variables included spectral, textural and contextual
image information, and the variables chosen by the decision
tree included many features not available or as easily
determined with pixel based image analysis. Spectral
information was selected near the top of the classification
trees, while contextual and textural variables were more
common closer to the terminal nodes of the classification
tree. The combination of multi-resolution image segmenta-
tion and decision tree analysis facilitated the selection of
input variables and helped in determining the appropriate
image analysis scale.

Introduction
At the Jornada Experimental Range (JER) operated by the USDA
Agricultural Research Service, significant research efforts are
focused on multi-scale assessment and monitoring of desert
rangelands. Part of this ongoing research program is aimed at
determining relationships between ground-based observations
and remotely sensed data. The goal of this study was to
develop a vegetation classification of a 1,200 ha pasture in
order to ascertain the extent and type of grassland and shrub
land. Maps derived from this study will serve as inputs for
livestock grazing research and techniques applied will help
improve vegetation mapping at the JER. Specific objectives of
this study were (a) to conduct a multi-scale vegetation analysis
of a QuickBird image, and (b) to evaluate an approach of
combining object-oriented classification with classification tree
analysis (CTA). Grasses were of primary interest for mapping,
because they are more palatable to livestock than shrubs.
However, the prevalence of honey mesquite shrubs (Prosopis
glandulosa Torr.) led to an approach of first mapping and
masking out shrubs, so that inter-shrub vegetation could be
assessed separately. It is hoped that the results of this study
will lead to an improved approach for mapping arid land
vegetation using high-resolution imagery.
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Classification of arid land vegetation plant communities
often presents unique problems due to the high reflectance
of the soil background, a variable mixture of green and
senescent grasses, multiple scattering due to open canopies
and bright soils, and the prevalence of shrubs in grasslands
(Okin and Roberts, 2004), all of which can make it difficult to
determine the proportion of grass cover from high-resolution
imagery. In addition, when very high spatial resolution
imagery (e.g., Ikonos, QuickBird) is used with traditional
pixel-based classification, unique problems arise due to a
greater degree of shadow and greater spectral variability
compared to lower spatial resolution images, all of which
can make it difficult to separate classes (Hay et al., 1996).
Object-based image analysis offers an alternative, whereby
an image segmentation process combines pixels into discrete
objects that are homogenous with regard to spatial or spectral
characteristics (Ryherd and Woodcock, 1996). Homogeneity
in this case refers to smaller within-object than between-
object variance.

Object-based segmentation and image classification
techniques have been used successfully with very high
resolution images of urban areas (Herold et al., 2003; Thomas
et al., 2003), for determining shrub encroachment (Hudak
and Wessman, 1998, 2001; Laliberte et al., 2004), as well as
for various land-use/land-cover mapping projects (Lennartz
and Congalton, 2004; van der Sande et al., 2003; Wang et al.,
2004). In ecological studies, image segmentation is especially
appropriate, because landscapes consist of patches; moreover,
due to scale-dependency of objects in a landscape (Turner
and Gardner, 1994), segmentation at multiple scales is an
approach that offers added insight into ecological processes
(Burnett and Blaschke, 2003; Hay et al., 2002).

CTA modeling is a nonparametric statistical technique
that helps uncover structure in the data. A dataset is succes-
sively split into increasingly homogenous subsets until
terminal nodes are determined. In remote sensing, the
response variable for a classification tree is a categorical
variable (land-use/land-cover class), and for a regression tree
the response is a continuous variable (percent cover, percent
canopy closure). Explanatory variables can be categorical or
continuous (spectral response in bands, elevation, aspect,
etc.). The terminal nodes of the tree represent the resulting
land-use/land-cover classes; and as such, the tree results in
a number of class prediction rules that are used to create
a predictive map. CTA has several advantages over linear
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regression models: (a) it is nonparametric and makes no
distributional assumptions of any kind, (b) it is not signifi-
cantly affected by outliers or collinearities, (c) it can detect
and reveal variable interactions, (d) both continuous and
categorical variables can be used, (e) it handles missing
values well, and (f) it is an excellent data reduction tool,
capable of finding significant variables if the dataset con-
tains a large number of explanatory variables (Breiman
et al., 1984; Clark and Pregibon, 1992).

CTA has been used increasingly in recent years in
remote sensing (de Fries et al., 1998; Hansen et al., 1996;
Lawrence et al., 2004), and often with better results than
other classification approaches. Lawrence and Wright (2001)
found that the CTA approach facilitated the use of ancillary
data in rule-based classification. Friedl and Brodley (1997)
concluded that classification accuracies from decision trees
were consistently greater than accuracies obtained using
maximum likelihood and linear discriminant function
classifiers. Borak and Strahler (1999) determined that the
use of a decision tree resulted in a 75 percent reduction in
data dimensionality, without significantly degrading classifi-
cation accuracies.

Object-based classification and CTA complement each
other well. The object-based image analysis program eCogni-
tion (Baatz and Schaepe, 2000; Definiens, 2003) used in this
study outputs hundreds of features that describe image
objects created in the segmentation process. Those features
include spectral, spatial, textural, and contextual (relation-
ships between neighboring objects and objects at multiple
scales) information. The CTA approach is well suited to sort
through those numerous features and determine which best
describe a terminal class in the classification tree, but a
concern for chance agreement does exist.

There are only a few examples in the literature where
object-based classification and CTA have been combined
in this manner, and in all studies only urban areas were
mapped. Thomas et al. (2003) used this approach for urban
mapping with Airborne Data Acquisition and Registration
(ADAR) digital aerial imagery and determined that it increased
the accuracy of the map compared to a supervised/unsuper-
vised classification approach, facilitated the determination of
features to be used in the classification, and proved to be a
time-saving classification approach. Tullis and Jensen (2003)
used a decision tree to combine spectral and spatial attrib-
utes from image segmentation to detect houses in Ikonos
imagery. A similar approach was used by Hodgson et al.
(2003) for determining imperviousness from aerial photogra-
phy and lidar (light detection and ranging) data. Those
authors found that the combination of decision tree and per-
segment classification had the lowest standard error and the
highest R2 value compared to an Isodata and maximum
likelihood classification approach.

Our approach is novel in that we are using object-based
classification combined with CTA for analyzing arid land
vegetation with QuickBird imagery and that we are using
multi-resolution segmentation in order to determine the
optimal scale for our vegetation analysis.

Methods
Study Site
The Jornada Experimental Range is located approximately
40 km northeast of Las Cruces, New Mexico in the northern
part of the Chihuahuan Desert. The area is part of the Jornada
del Muerto Basin situated at about 1,200 m elevation between
the Rio Grande Valley to the west and the San Andres Moun-
tains to the east. Average monthly maximum temperatures
range from 13° C in January to 36° C in June, and mean annual

precipitation is 241 mm of which more than 50 percent occurs
during July, August, and September. Rainfall amount and
distribution is highly variable (Wainwright, inpress). Droughts,
defined as years with �75 percent of mean annual precipitation
occurred during 18 years between 1915 to 1995 (Havstad et al.,
2000). Historically, this area was a semi-desert grassland, but
shrub encroachment by honey mesquite has led to a conversion
to shrub land. From 1915 to 1998, black grama grass (Bouteloua
eriopoda) decreased from 19 percent to 1.2 percent, while
mesquite increased as a primary dominant from 26 percent to
59 percent (Gibbens et al., 2005). Our study occurred in a 1,200
ha pasture, which represented most of the major vegetation
communities at the JER. Dominant grass species included black
grama, tobosa (Pleuraphis mutica), dropseed (Sporobolus spp.),
threeawn (Aristida spp.), and burrograss (Scleropogon brevi-
folius). Dominant shrub species included honey mesquite, four-
wing saltbush (Atriplex canescens), soap-tree yucca (Yucca
elata), Mormon tea (Ephedra torreyana), and broom snakeweed
(Gutierrezia sarothrae). Black grama and tobosa tend to occur
in pure stands and are more spectrally distinct than dropseed
and threeawn, which are often intermixed, occur with broom
snakeweed, and are not easily identified with remote sensing,
even in high-resolution imagery. Black grama is more palatable
to livestock than the other grass species and therefore of high
interest in our mapping effort. Mesquite occurs both as an
encroaching shrub to grasslands and as a monoculture in
mesquite coppice dunes. In these latter areas, mesquite plants
are quite large and easily distinguished because the shrub
interspace typically lacks vegetation except during large pulses
of rainfall.

Image Data and Preprocessing
A QuickBird satellite image was acquired over the study
area on 04 November 2004. The panchromatic (0.61 cm
ground resolution) and the multispectral (2.4 m ground
resolution) images were pan sharpened using the principal
component method in Erdas Imagine® 8.7. Although there
are tradeoffs in spectral quality associated with the pan
sharpening process (Wald et al., 1997), we chose to use this
approach because our objects of interest included both small
shrubs to be masked out and only visible in the panchro-
matic band, as well as vegetation communities that required
image analysis with multispectral bands. The preservation of
original image radiance values was not as important as the
ability to extract small features (shrubs, small vegetation
patches, bare areas between shrubs). Moreover, in an object-
oriented approach, the radiometric values for individual
pixels are averaged for each object, therefore the changes
imparted by the pan sharpening process are not as critical as
they would be for pixel-based analysis. Pan sharpened
imagery has been successfully used in combination with
object-oriented analysis for land-cover mapping (van der
Sande et al., 2003), determination of land-use intensity (Ivits
et al., 2005), and forest classification (Kosaka et al., 2005;
Schwarz et al., 2001).

The image was georectified using a second order
polynomial function with local ground control points
collected from a 1 m resolution digital orthoquad image.
Derived image products from the multispectral image
included the first principal component (PC1) (which explained
93.53 percent of the total variance) and a soil adjusted
vegetation index (SAVI) image. SAVI is designed to minimize
the effect of the soil background (Huete, 1988) and is
calculated as follows:

(1)

Similar to an NDVI, the near infrared (NIR) and red bands are
used in the calculation, but with the addition of the adjust-

SAVI � [(NIR � red)/(NIR � red � L)]*(1 � L).
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ment factor L. We used an adjustment factor of 0.5, which
has been shown to reduce soil influences considerably
(Huete, 1988) and is the most widely used adjustment factor
for intermediate vegetation cover. Other additional data
layers included a soil map, a 10 m DEM, an aspect, and a
slope image. Although elevation had a relatively narrow
range in the study area (1,313 to 1,338 m), we felt that this
feature could help identify certain vegetation classes, such
as low lying playa areas that are usually associated with
tobosa grass.

Image Segmentation
We used an object-based multiscale image analysis method
embedded in the software eCognition (Baatz and Schaepe,
2000; Definiens, 2003). In this approach the image is seg-
mented based on three parameters: scale, color (spectral
information), and shape. Color and shape can be weighted
from 0 to 1. Within the shape setting, smoothness or com-
pactness can be defined and also weighted from 0 to 1.
Scale is a unit-less parameter that controls the size of image
objects, with a larger scale parameter resulting in larger
image objects. Table 1 shows the segmentation parameters
and resulting object statistics for this study. The parameters
are determined by visual assessment of the segmentation
results and depend on the classification objectives. The
segmentation technique in eCognition is a bottom-up region
merging technique where smaller image objects are merged
into larger ones with the three input parameters controlling
the growth in heterogeneity between adjacent image objects.
The process stops when the smallest growth exceeds the
threshold defined by the scale parameter (Benz et al., 2004).
Once segmentation is complete, classification is performed
using the segmented objects. To increase the flexibility of the
classification, segmentation is usually performed at different
scales, which creates a hierarchical network of image objects
that represent the image information at different spatial
resolutions simultaneously. Image objects can be related
contextually, both horizontally at the same segmentation
level (neighborhood relations), as well as vertically to the
level above (super objects) or below (sub objects).

The workflow of this project is shown diagrammatically
in Figure 1. The first step was to mask out all shrubs. Mesquite
shrubs occurred throughout the study area, and if shrubs were
included in the segmentation, their low spectral values would
reduce the overall mean spectral value for an object. By
masking the shrubs, we were able to obtain image object
attributes that described only shrub interspace vegetation.

In a previous study, we had found that 87 percent of
shrubs greater than 2 m2 could be detected and mapped
with the same object-based classification method (Laliberte
et al., 2004). We used that same approach to classify shrubs
in this study area at the finest segmentation level (level 0).
Shrubs were extracted by using the following object fea-
tures: mean brightness value, mean difference to neighbors,
and mean difference to super object (see Table 2 for a
definition of features). The resulting classification image

was converted into a binary image, setting shrubs to 0 and
background to 1. This binary mask was multiplied with the
original pan sharpened image to produce a masked shrub
image, in which all shrubs had a value of 0. This image
was then segmented again at levels 1 to 4. Smaller image
objects are nested within the larger ones, and shrubs have
been excluded and carry a feature attribute value of 0
(Figure 2).

Ground Sampling
In order to ensure that we would capture the variability in
the vegetation, we chose a stratified proportional sampling
approach, where the number of plots in each vegetation
community was based on the proportional area of that
vegetation community. Borak and Strahler (1999) found
that proportional sampling resulted in higher accuracy
(73.5 percent) than equal sampling (47.2 percent) when
using decision trees. In order to delineate vegetation
boundaries for the stratified sampling, we created a nearest
neighbor classification of the segmented image in eCogni-
tion. This requires the user to select sample segments that
represent the vegetation type. Those samples were based
on visual determination and field visits. The image was
classified into four classes: tobosa, dense grass, sparse
grass, and other vegetation. This classification was very
coarse and only served as a stratification to ensure that
the field plots would capture the main vegetation types.
After classification, random plots were chosen for each
class. We determined that 325 plots should be sufficient
for the 1,200 ha area, with each sample plot measuring
2.5 m � 3.5 m.

At each plot location in the field, we determined the
dominant species, estimated percent vegetation cover and
took a photo with a digital camera for future reference. The
dominant vegetation communities were grouped into four
classes: black grama, tobosa, other grasses, and non-grass
communities.
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TABLE 1. SEGMENTATION PARAMETERS AND RESULTING IMAGE OBJECT STATISTICS

Segmentation Level Scale Parameter1 Color/Shape2 Smoothness/Compactness #of Objects Mean Area of Objects (sqm)

Level 0 10 0.8/0.2 0.8/0.2 1211433 10
Level 1 100 0.9/0.1 0.5/0.5 10137 1074
Level 2 200 0.9/0.1 0.5/0.5 3256 3288
Level 3 400 0.9/0.1 0.5/0.5 1467 7289
Level 4 600 0.9/0.1 0.5/0.5 1093 9783

1Scale parameter is without unit.
2Color/shape and smoothness/compactness values are weighting factors ranging from 0 to 1.

Figure 1. Schematic diagram of project workflow.
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Extract Object Features for Ground Plots
The next step consisted of extracting the spectral, spatial
and contextual features available in eCognition for the
segments that contained a plot. It was assumed that field
information collected for the plot represented the vegetation
for the entire segment. Object features can number in the
100s, because they are calculated for each layer, in this case
four spectral bands (R, G, B, NIR) as well as PC1, SAVI, DEM,
soil, aspect, and slope. (In this paper, spectral bands will be
referred to as bands, while derived indices and components
will be called layers.). Although CTA is non-parametric and
correlation between variables is not a great concern, a purely
random approach to attribute selection can result in an
increase of chance agreement between explanatory and
response variables (Lawrence and Wright, 2001), and can
produce classification trees that are over fitted and have
poor classification accuracy (Liu and White, 1994). For that
reason, we excluded some features that would contribute
little or nothing to improve the vegetation classification
based on a related study (Laliberte et al. 2004) and on visual
assessment in eCognition’s Feature View. The excluded
features included mostly shape features, such as area of
the segment, width to length ratio, shape index, and border
length. Such shape features can be very useful in urban
image analysis (Thomas et al., 2003; Tullis and Jensen,
2003), but vegetation cover in our study area is more defined
by spectral and contextual features. We did retain features
describing spatial relationships between hierarchical levels,
because this information was useful in a previous study
(Laliberte et al., 2004).

The features that were selected as variables for input to
the CTA are divided into layer features and texture features
(Table 2). For the DEM layers, we used the mean of the layer
for the object. Soil (7 classes) and aspect (N, NE, E, SE, S,
SW, W, NW) were used as categorical variables, while for
the six remaining input layers (R, G, B, NIR, PC1, SAVI), textural
and contextual features were calculated as well. This resulted
in a total of 118 object features. Texture features in eCognition

are calculated either based on the segment’s sub-object, or
on the gray level co-occurrence matrix (GLCM) and the gray
level difference vector (GLDV) of the object’s pixels after
Haralick et al. (1973). The GLDV is the sum of the diagonals
of the GLCM. It counts the number of references to the
neighboring pixels’ absolute differences (Definiens, 2003),
and has shown to be useful in vegetation classifications
(Ivits and Koch, 2002).

Classification Tree Analysis
For the decision tree analysis we used CART® by Salford
Systems, which uses the algorithm originally developed
by Breiman et al. (1984). We will use the expression CART®

when we refer to the specific program and CTA when
referring to classification tree analysis in general. We used
half of the sample plots to build the decision tree, and the
other half to perform independent accuracy assessments of
the resulting predictive maps.

The default splitting rule in CART® is the Gini index (or
Gini impurity measure), a measure of heterogeneity. The
Gini impurity measure at node t is defined as

(2)

where p(j) and p(i) are the probability of class j and i at
node t. The sum is extended over every class. The Gini
index ranges from 0 to 1; it is equal to 0 if all observations
in a node belong to the same class, and it is 1 when differ-
ent class sizes at the node are equal (Breiman et al., 1984;
Steinberg and Colla, 1997). In CART®, a maximal tree was
grown, and then pruned back to obtain the optimal tree by
determining the lowest misclassification errors. The maximal
tree is always over-fit, because it represents all idiosyn-
crasies of the learning data set. The optimal tree was found
by ten-fold cross validation. This was done by dividing the
learning data set into ten subsamples with an equal distribu-
tion for the dependent variable. A maximal tree was grown
from 90 percent of the subsamples, with 10 percent of the

g(t) � �p(j) p(i)
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TABLE 2. OBJECT FEATURES USED FOR INPUT TO CTA ANALYSIS. THE FEATURES ARE CALCULATED FOR EACH IMAGE OBJECT AND

FOR ALL SIX INPUT LAYERS (R, G, B, NIR, PC1, SAVI) EXCEPT WHERE SPECIFIC LAYERS ARE NOTED

Layer Features
Mean of layer: Layer mean value calculated from the values of all pixels forming an image object
Mean DEM: Mean value of elevation calculated from the values of all pixels forming an image object
Aspect: Aspect value of image object
Mean Slope: Mean value of slope calculated from the values of all pixels forming an image object
Soil type: Soil type of image object
Brightness (from R, G, B, NIR): Sum of mean values of R, G, B, NIR for an image object divided by 4
Standard deviation: the standard deviation of the layer values of all pixels forming an image object
Ratio: the layer mean value of an image object divided by the sum of all layer mean values 

(i.e., ratio (G) � mean (G)/mean (R � G � B � NIR)
Mean difference to neighbors: the mean difference between an image object’s mean value and the mean 

value of all neighboring objects.Individual neighbor differences are weighted by the proportion of boundary they occupy
Mean difference to super object: the mean difference between an image object’s mean value and the mean value of its super object
Ratio to super object: the ratio of the mean value of an image object and the mean value of its super object
Standard deviation difference to super object: the difference between the standard deviation of 

an image object and the standard deviation of its super object
Standard deviation ratio to super object: the ratio of the standard deviation of an image object and the 

standard deviation of its super object
Mean difference to scene: the difference between the mean value of an image object and the mean value of the whole scene
Ratio to scene: the ratio of the mean value of an image object and the mean value of the whole scene

Texture features
GLCM1: the gray level co-occurrence matrix calculated for all pixels of an image object. In order to 

reduce boundary effects, the pixels bordering the image object are also taken into account. Homogeneity, 
contrast, dissimilarity, entropy, angular second moment, mean, standard deviation and correlation were calculated.

GLDV2: the gray level difference vector calculated for all pixels of an image object. The GLDV is the sum 
of the diagonals of the GLCM. Angular second moment, entropy, mean, and contrast were calculated

Mean of sub objects: the mean value of the image object’s sub object.

1Gray level co-occurrence matrix, and 2gray level difference vector are derived after Haralick et al. (1973). Further detail and formulas for
calculating the features can be found in Definiens’ eCognition user manual (Definiens, 2003). Definitions for features selected for the level 2
classification tree are found in Table 4.
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sample reserved for assessing the misclassification error.
This process was repeated ten times with the learning data,
each time reserving a different 10 percent of the sample for
error assessment. Error rates from the trees were combined
to yield estimated error rates for the nodes in the maximal
tree. This allowed for determination of error rates for trees
of different sizes, and gave an indication of the optimal tree
size (Steinberg and Colla, 1997). In addition, to prevent over
fitting of the tree, splitting was stopped when a terminal
node had less than ten cases. We created decision trees and
predictive maps based on each of the four segmentation

levels to determine at which level the classification accuracy
would be highest. The rule base from CART® was applied in
eCognition to create classification maps.

Results
Rule Base and Map Output
The decision tree for level 2 (Figure 3) depicts the rule base
used to create the classification for that level. The tree for
level 2 is shown here because the map based on those rules
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Figure 2. Portion of pan sharpened QuickBird image segmented at level 1 (a), level 2 (b), level 3 (c),
level 4 (d). Each image covers an area of 190 m � 223 m. White lines represent image object bound-
aries. Shrubs excluded from segmentation appear as dark objects.
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had the highest accuracy at 80 percent (see accuracy assess-
ment below). Both maps (Plate 1) display the same data in a
hierarchical fashion. Plate 1b shows the classification with 17
classes, which is one class per terminal node in the classifica-
tion tree, while in Plate 1a, the 17 classes have been col-
lapsed into the four classes of interest: black grama, tobosa,
non-grass, and other grass. This type of display is one of the
advantages of using eCognition, which allows the user to
group classes together (such as tobosa 1 to 3 into the tobosa
group) and switch the view between expanded and collapsed
groups. This is advantageous if the rule base requires editing.
For example, a black grama terminal node can be changed to
nongrass terminal node, and the results can be grouped into a
four-class map and visualized immediately. The shrubs that
were classified in the finest segmentation and masked out are
shown overlaid on the map in black.

Accuracy Assessment
The independent accuracy assessment using the 161 samples
showed that overall accuracy was highest at 80 percent for
the level 2 segmentation, with very similar results for level
3 at 79 percent overall accuracy (Table 3). The level 2
classification showed higher user’s accuracy for black
grama and nongrass, while the tobosa and other grass cate-
gories showed slightly higher user’s accuracy for the level 3
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Figure 3. Classification tree for the level 2 segmenta-
tion. At each node, a variable and its threshold value is
shown in the hexagonal box. Values greater than the
one shown in the box are split to the right, values
smaller are split to the left. Terminal nodes are shown
in bold. For a definition of the variables, see Table 4.

Plate 1. Classification based on classification tree for level 2 segmentation: (a) shows map collapsed
into four classes: black grama, tobosa, non-grass, other grass, and (b) shows map expanded into 17
classes, one per terminal node in the classification tree. Shrubs (in black) were derived from a sepa-
rate classification at the finest segmentation level and were overlaid onto both maps.
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classification. Due to our interest in the black grama class, the
level 2 map was selected as the best map for our use.

The tobosa class showed relatively few misclassification
errors in all levels and was represented in all four decision
trees by fewer end nodes than the other classes, and those
nodes were usually clustered together, all of which indicates
lower class variability. The other grass class was confused
both with the non-grass class as well as with black grama.
The black grama class was well differentiated in levels 2
and 3, but showed confusion with other grasses in levels 1
and 4. A probable reason for this is that a site with mixed
grasses can appear spectrally and texturally very similar to a
black grama site with lower vegetation cover. Visual inspec-
tion of the maps also showed that in levels 1 and 4, higher
percent cover black grama areas were consistently classified
as black grama, while lower cover black grama was often
confused with the other grass class. We assume that at a
coarser level segmentation, segments with lower black grama
cover and segments of other grass are combined, resulting in
greater confusion between black grama and other grasses in
level 4. In level 1, it is probable that the segments are small
enough that the lower cover black grama sites are separated

from those of higher cover and that many are misclassified
as other grasses. Levels 2 and 3 appear to segment the image
in a way that maximizes the separation of the black grama
and other grass class.

Variable Selection in Level 2
In a decision tree approach, the selection of variables and the
order in which they appear in the tree are important pieces
of information that give insight into relationships between
vegetation and remotely sensed variables. In this paper, the
terms object feature and variable are used interchangeably,
with object feature relating to the attribute of an image object
exported from eCognition and variable describing the same
attribute that then becomes an explanatory variable in the
CART® analysis. From a total of 118 object features exported
from eCognition and used as explanatory variables in CART®,
14 were selected for the level 2 classification tree (Table 4).
The variables are classified by category and layer in the
table. Category denotes whether a variable is a spectral or
textural feature or whether it describes relationships between
neighboring, super- or sub-objects. Layer describes the type
of input band, index or component that the feature is associ-
ated with. Score is an output from the CART® program that
reflects the contribution of each variable in classifying or
predicting the output class, and scores range from 0 to 100
(Steinberg and Colla, 1997).

The more frequent and earlier in the tree a variable is
used, the higher explanatory power it has (Lagacherie and
Holmes, 1997), which is reflected in the score. In the level 2
tree, the first variable was the mean of the near-infrared
band, and the same variable was used again as a second
split. This is not surprising, because the near-infrared band
is valuable, often in conjunction with a visible band, for
distinguishing vegetation amount. Other variables used in
the tree included various measures of texture and relation-
ships to neighboring, super- and sub-objects. The mean of
the near-infrared band was the feature with the highest score
of 100 due to the fact that it appeared in the first top tiers
of the tree and was selected twice. The next highest score
was 31.58 for GLDV Entropy SAVI, which was used in the
second split of the tree. While a spectral feature had the
highest score, textural features appeared 5 times in the tree,
neighbor relationships 3 times and super object relationships
2 times. The SAVI was selected 7 times, and it was always
selected in conjunction with textural and contextual features
in this tree (such as GLCM of SAVI). On the other hand,
the near-infrared band was not combined with textural
or contextual features, but only selected by its mean
spectral value.

While score is a good indicator for the contribution of
each variable and for the scale at which it operates, it may
be misleading to interpret the score merely as a measure of
importance. In our case, the mean of the near-infrared band
was the first split, sorting out most of the tobosa classes and
the highest cover black grama on one side and the rest of
the classes on the other side of the tree. As the tree was
split out further, textural and neighbor relation variables
were encountered more often. A variable may have a lower
score if it appears lower in the tree, but if the terminal
node it defines is an important class for the user, then that
variable must be considered important as well.

One thing the score can indicate, however, is which
variable is most appropriate for a future classification at
a comparable segmentation level in a similar vegetation
community. If a standard nearest neighbor classification was
to be used in eCognition based on selected samples (similar
to a supervised classification) (Laliberte et al., 2004), the
scores and features chosen for the trees in this study can
serve as indicators for feature selection.
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TABLE 3. ERROR MATRIX FOR RULE-BASED CLASSIFICATION AT

4 SEGMENTATION LEVELS. ROWS ARE CLASSIFICATION DATA; 
COLUMNS ARE REFERENCE DATA

Black Other Non
Level 1 Grama Grasses Grass Tobosa

Black grama 28 12 4 1
Other grasses 7 22 5
Non grass 3 12 48
Tobosa 2 2 15
Producer’s accuracy 70% 46% 84% 94%
User’s accuracy 62% 65% 76% 79%
Overall accuracy 70%
Kappa index 0.53

Black Other Non
Level 2 Grama Grasses Grass Tobosa

Black grama 29 4 1
Other grasses 8 37 7
Non grass 2 6 47
Tobosa 1 1 2 16
Producer’s accuracy 73% 77% 82% 100%
User’s accuracy 85% 71% 85% 80%
Overall accuracy 80%
Kappa index 0.72

Black Other Non
Level 3 Grama Grasses Grass Tobosa

Black grama 32 4 3 1
Other grasses 5 35 8
Non grass 2 8 45
Tobosa 1 1 1 15
Producer’s accuracy 80% 73% 79% 94%
User’s accuracy 80% 73% 82% 83%
Overall accuracy 79%
Kappa index 0.71

Black Other Non
Level 4 Grama Grasses Grass Tobosa

Black grama 34 10 4
Other grasses 4 23 7
Non grass 1 10 44
Tobosa 1 5 2 16
Producer’s accuracy 85% 48% 77% 100%
User’s accuracy 71% 68% 80% 67%
Overall accuracy 73%
Kappa index 0.62
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Variable Selection in All Segmentation Levels
Although the accuracy at levels 1, 3, and 4 was lower than
level 2, we were still interested in comparing variable selec-
tion and scores for all 4 levels, because this information can
give insight about at which segmentation scale a variable is
selected, and whether the variable operates near the top
or the bottom of the tree within a segmentation level. We
grouped each variable in two ways: (a) by category (texture,
spectral, neighbor relationship, super-/sub-object relation-
ship, soil and DEM), and (b) by layer (near-infrared, red,
green, blue, all four bands, SAVI, PC1) and sorted the informa-
tion first by segmentation level, then by score.

The category grouping (Table 5) indicates that texture,
spectral and neighbor information was selected in all segmen-
tation levels, but the lower scores of texture mean that
textural features appeared closer to the terminal nodes in
the decision tree. In all four classification trees, the first
variable in the tree was either the mean of the near-infrared
or the mean difference to the neighbor, and textural features
were found lower in the classification tree. The highest
scores were found with spectral information in levels 1 and
2 and neighbor relationships in levels 3 and 4. Neighbor
relationships played a bigger role in the coarser segmenta-
tion, because in our segmentation scheme, the difference to
a neighboring object was larger in the coarser than the finer
segmentation. This might not be the case in other segmenta-

tion hierarchies, because the changes in differences to
neighboring objects depend on the relative scale parameter
used as well as the relative differences between the scale
parameters for each level.

Variables relating to super- and sub-objects were used in
all levels except level 3, and those variables appeared lower
in the tree similar to texture. The soil variable was not used
in levels 2 and 3, but appeared as the second split variable
in the level 1 decision tree. We expected that soil would be
a useful variable at any scale, and are unsure why it was not
selected for all levels. The elevation variable was only used
at the coarser segmentation levels, which makes sense,
because we used a 10 m resolution DEM. At level 4, eleva-
tion appeared as the third split variable in the tree, and as
expected it separated tobosa in the lower lying playa areas
from the other vegetation classes.

Although not shown here, among the eight GLCM
features (angular second moment, contrast, correlation,
entropy, dissimilarity, homogeneity, mean, and standard
deviation) and the four GLDV features (angular second
moment, contrast, entropy, and mean) available in eCogni-
tion, entropy was selected most often (5 times and 2 times
in combination with SAVI). Entropy measures the degree of
disorder or heterogeneity in an image, and this particular
texture measurement has been found useful in mapping
vegetation (Franklin et al., 2000).
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TABLE 4. VARIABLE SELECTION AND SCORES FOR THE LEVEL 2 CLASSIFICATION TREE. THE VARIABLES ARE CLASSIFIED BY CATEGORY AND LAYER IN

THE TABLE. CATEGORY DENOTES WHETHER A VARIABLE IS A SPECTRAL OR TEXTURAL FEATURE OR WHETHER IT DESCRIBES RELATIONSHIPS BETWEEN

NEIGHBORING, SUPER- OR SUB-OBJECTS. LAYER DESCRIBES THE TYPE OF INPUT BAND, INDEX OR COMPONENT THAT THE FEATURE IS ASSOCIATED

WITH. SCORE IS AN OUTPUT FROM THE CART® PROGRAM THAT REFLECTS THE CONTRIBUTION OF EACH VARIABLE IN CLASSIFYING

OR PREDICTING THE OUTPUT CLASS, AND SCORES RANGE FROM 0 TO 100

Variable (# of times selected) Definition Category Layer Score

Mean1 NIR (2) Mean values of image Spectral NIR 100.00
object in the NIR band

GLDV2 Entropy SAVI Gray level difference vector Texture SAVI 31.58
entropy for SAVI

StdDev difference to super object SAVI Difference between the SAVI standard Super object SAVI 12.82
deviation value for an image object
and that of its super object

StdDev Blue Standard deviation of image object Spectral Blue 9.41
values in the blue band

StdDev to neighbor SAVI (2) Difference between the SAVI standard Neighbor SAVI 8.26
deviation value for an image object
and that of its neighbor

Brightness Mean of the mean values of the red, Spectral All 4 bands 7.50
green, blue, and NIR bands

Ratio Blue Mean of the blue band divided by the Spectral Blue 7.44
sum of the mean values of red,
green, blue and NIR bands

GLCM3 Mean Gray level co-occurrence matrix mean Texture All 4 bands 6.34
Mean difference to neighbor SAVI Mean difference between the mean Neighbor SAVI 6.02

value of SAVI and the values of all
its neighbor segments

StdDev difference to super object Blue Difference between the blue band standard Super object Blue 5.52
deviation value for an image object
and that of its super object

StdDev to neighbor green Difference between the green band Neighbor Green 5.41
standard deviation value for an image
object and that of its neighbor

GLCM Entropy SAVI Gray level co-occurrence matrix Texture SAVI 4.61
entropy for SAVI

GLCM Correlation SAVI Gray level co-occurrence matrix Texture SAVI 4.26
correlation for SAVI

GLCM Homogeneity SAVI Gray level co-occurrence matrix Texture SAVI 4.06
homogeneity for SAVI

1Calculations for statistics are derived using all pixels forming an image object.
2Gray level difference vector and 3Gray level co-occurrence matrix are derived after Haralick et al. (1973). Further detail and formulas for
calculating the features can be found in Definiens’ eCognition user manual (Definiens, 2003).

05-066  1/11/06  3:09 AM  Page 204



The layer grouping (Table 6) showed the highest scores
for NIR (levels 1 and 2), PC1 (level 3), and red band (level 4).
Overall, the near-infrared band had the highest scores,
meaning it was selected early in the tree. The green and
blue bands as well as SAVI were found more frequently in
the lower part of the decision tree, and SAVI was the most
frequently selected variable. SAVI, the blue and NIR bands
were selected in all four levels, while the red band was not
found in the level 1 and 2 decision trees. The blue band was
selected more frequently than the red or green band; most of
those selections (5 of 9) were relationships to neighbor and
super objects. The blue band is generally noisier and more
affected by atmospheric scattering than other bands, but in
spite of this was useful in our study.

Discussion and Conclusions
The hierarchical segmentation approach used in this study
was well suited for distinguishing features at different
scales. Shrubs were segmented and classified at a fine
scale and masked out, so that shrub-interspace vegetation
could be analyzed at coarser scales. We chose four segmen-
tation levels to determine the scale that yielded the highest
classification accuracy. A decision tree approach was

chosen, because eCognition creates hundreds of spectral,
spatial, textural, and contextual object features. Although
a feature space optimization is available in eCognition
(Definiens, 2003), it relies on object training samples and
nearest neighbor classification, whereas we were interested
in the use of decision trees and rule based classification for
this study. In addition, the feature space optimization only
defines features to use, not a rule base for the features.

The approach of combining object-based image analysis
with decision trees was an excellent data reduction tool for
the numerous object features. The strength of the decision
tree lay in selecting useful features from a large number of
possible features. Correlation between features was not a
great concern, because decision trees are non-parametric,
nonetheless, we excluded features that we knew would not
contribute to the analysis. The application of the rule base
in eCognition, the classification and class display were
straightforward. Moving back and forth between collapsing
and expanding classes based on either all nodes of the
classification tree or the final classification scheme was an
especially useful feature for visualizing misclassifications.

Aside from incorporating textural information, tradi-
tional pixel-based classification has mostly relied on spectral
information. With the advent of high-resolution satellite
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TABLE 5. VARIABLES USED IN THE CLASSIFICATION TREES SORTED BY CATEGORY (TEXTURE, SPECTRAL, NEIGHBOR, ETC.), SEGMENTATION LEVEL (1 TO 4), AND

SCORE DERIVED FROM THE CART® PROGRAM

Texture Spectral Neighbor Super/Subobject Soil DEM

Level Score Level Score Level Score Level Score Level Score Level Score

1 10.63 1 100.00 1 15.70 1 7.58 1 31.55 3 13.25
1 5.89 1 16.11 2 8.26 2 12.82 4 10.06 4 16.04
1 5.23 1 11.26 2 6.02 2 5.52
1 3.53 2 100.00 2 5.41 4 7.41
1 2.95 2 9.41 3 100.00 4 1.91
2 31.58 2 7.50 3 7.09
2 6.34 2 7.44 4 100.00
2 4.61 3 64.43 4 12.21
2 4.26 3 30.17 4 7.90
2 4.06 3 27.63 4 7.67
3 17.30 3 25.76 4 5.41
3 9.24 3 13.16 4 3.25
3 8.36 3 12.85 4 1.66
3 7.11 3 7.93
3 6.07 4 54.41
3 5.92 4 7.30
4 14.34 4 5.53
4 9.61

TABLE 6. VARIABLES USED IN THE CLASSIFICATION TREES SORTED BY LAYER, SEGMENTATION LEVEL

AND SCORE DERIVED FROM THE CART® PROGRAM

SAVI All 4 Bands Blue PC1 NIR Red Green

Level Score Level Score Level Score Level Score Level Score Level Score Level Score

1 2.95 1 16.11 1 15.70 1 5.89 1 100.00 3 27.63 2 5.41
2 31.58 1 10.63 1 11.26 3 100.00 2 100.00 3 7.09 3 7.93
2 12.82 1 5.23 2 9.41 3 8.36 3 63.43 4 100.00 4 7.41
2 8.26 1 3.53 2 7.44 3 5.92 3 13.16 4 7.90 4 7.30
2 6.02 2 7.50 2 5.52 4 54.41 4 5.53 4 7.67
2 4.61 2 6.34 3 12.85 4 14.34 4 1.66 4 1.91
2 4.26 3 25.76 4 12.21 4 9.61
2 4.06 3 17.30 4 5.14
3 30.17 3 7.11 4 3.25
3 9.24
3 6.07
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imagery, techniques traditionally used with manual aerial
photo interpretation are now finding their way into auto-
mated image analysis. Features such as shape, size, pattern,
tone, texture, shadows, site, and association are characteris-
tics more commonly associated with aerial photo interpreta-
tion (Lillesand and Kiefer, 2000), but have been found to
be increasingly useful with very high-resolution satellite
imagery and digital aerial photography (van der Sande et al.,
2003; Wulder et al., 1998).

The variables selected by CART® in our study included
many features that are not as easily determined or incorporated
in traditional pixel based image analysis, but are routinely
calculated in eCognition. Spectral information was selected
most often at or near the top of the classification trees, while
contextual and textural variables were selected near the terminal
nodes of the classification tree. This was observed in all four
segmentation levels and indicates that more subtle distinctions
are made in the statistical data using textural and contextual
information. Differences in the variable selection between
segmentation levels related mostly to the fact that in a coarser
segmentation, differences to neighbors were more pronounced,
and therefore, variables describing relationships to neighbors
were selected more often and had a higher score in levels 3
and 4 than in levels 1 and 2.

In the level 2 tree, the highest cover tobosa and black
grama classes were sorted out in the first split in the tree by
the mean of the near infrared band. A second split with the
mean of the near-infrared separated the lowest vegetation
cover and bare areas from the remaining classes. This makes
ecological sense, because the most spectrally distinct classes
(tobosa and dense black grama) were defined first. Less
spectrally distinct classes, such as mixed grasses and lower
cover black grama, were sorted out lower in the tree, mostly
by variables incorporating SAVI and textural features. The
SAVI was the most frequently selected layer, and was always
used in conjunction with textural or contextual features.
We did not incorporate other vegetation indices, because
in general, most vegetation indices are insensitive to non
photosynthetic vegetation, but sensitive to soil color (Okin
and Roberts, 2004). However, our results appear to indicate
that second order statistics derived from SAVI were useful
features for vegetation classification in our study.

Texture variables based on the gray level co-occurrence
matrix appeared in the lower part of the classification tree,
indicating that they are useful for subtle discriminations in
communities with mixed grasses and low to intermediate
vegetation cover. Textural information based on second order
statistics has been shown to improve classification accuracy
over using only spectral information (Moskal and Franklin,
2002; Tuominen and Pekkarinen, 2004), and Franklin et al.
(2000) found that the addition of texture improved higher
resolution images more than lower resolution images. Contex-
tual variables describing relationships between neighboring
objects or between super- and sub-objects were found in all
decision trees and had overall a relatively high score, espe-
cially in the coarser segmentation levels.

The classification accuracy of 80 percent for the level
2 decision tree was satisfactory for arid vegetation mapping
considering that we were able to separate black grama
and tobosa from other grass species and non-grass areas.
Although we broke down two of our classes (other grass and
non-grass) further in the field, the resulting sample size in
some of those classes was relatively small. Because CTA is
sensitive to large differences in sample sizes among classes,
we were not able to construct decision trees with half the
samples and estimate accuracy with the other half for a
larger number of classes.

In a future study, we intend to compare our results
with those of a nearest neighbor classification approach with

training samples. Using larger training areas on the ground
might be more appropriate in conjunction with an object-
based analysis, because ground training sites and image
objects will be of similar size. This approach will also allow
for comparing a feature space optimization method with the
decision tree method.

This study shows that the combination of multi-resolution
segmentation and classification tree analysis can be an effective
method for mapping arid rangeland vegetation at the pasture-
level scale. It allows for incorporating ancillary data layers,
facilitates the evaluation of numerous spectral, textural, and
contextual features of the input layers, and helps in determin-
ing the appropriate analysis scale. Future related research will
concentrate on applying this technique over larger areas and
with medium-resolution satellite imagery such as ASTER or
Landsat.
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