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Abstract 

 

Extrapolation of information from sites to landscapes or regions is especially problematic 

in spatially and temporally heterogeneous ecosystems. Although linear extrapolations are the 

easiest and most cost-effective, other approaches are necessary when spatial location and 

contagious or neighborhood processes are important. Because landscapes and regions consist of 

a mosaic of sites differing in spatial heterogeneity and degree of connectivity, we expect that a 

combination of scaling approaches is needed to characterize these areas. Nonspatial 

extrapolations may be most appropriate for areas that are relatively homogeneous and can be 

described by a relatively small number of units that repeat across a landscape or region. Spatially 

implicit or explicit approaches are expected to be necessary for those parts in which functionally 

similar, repeating units do not exist because of the importance of multiple interacting internal 

factors (spatially implicit) or connectivity with neighboring sites (spatially explicit). Our goal 

was to develop a conceptual framework to simplifying complex landscapes in order to minimize 

uncertainty in predictions. We illustrate our framework for arid and semiarid landscapes where 

determining spatial variation in carbon dynamics, and, in particular, aboveground net primary 

production (ANPP), is a timely and important problem.  

 

Keywords: ANPP, carbon dynamics, Chihuahuan Desert, nonspatial, spatially explicit, spatially 

implicit,



 3

I. Introduction and background 

 

Many of our most pressing ecological problems, such as the conservation of biodiversity, spread 

of invasive species, patterns in carbon sequestration, and impacts of disturbances (e.g., fire) must 

be addressed at the landscape scale (Hansen et al. 1993; Solomon et al. 1993; Dale et al. 1994; 

Pitelka et al. 1997; Turner et al. 1997; Aronson and Plotnick 1998; Bender et al. 1998; Stohlgren 

et al. 1999; Bachelet et al. 2001; Heyerdahl et al. 2001; Groffman et al. chapter 2 this volume; 

Law et al. Chapter 7 this volume; Urban et al. Chapter 14 this volume). However, much of our 

information about these problems comes from plot-scale studies that must be extrapolated to the 

landscape.  Because landscapes are complex, this extrapolation is not always straightforward or 

easy to accomplish (Turner et al. 1989a). Landscape complexity results from the processes, 

factors, and their interactions that occur across a range of spatial and temporal scales. The 

problem is further complicated by the presence of contagious or neighborhood processes that 

connect different parts of a landscape. Dispersal of seeds by wind or animals, fire, and erosion 

and deposition of soil and nutrients by wind and water are examples of spatial or contagious 

processes that influence ecosystem dynamics. Landscape complexity makes it difficult to 

understand and predict ecosystem dynamics across spatial scales with high levels of confidence 

or certainty.  Our goal is to develop a conceptual framework and operational approach to 

simplifying complex landscapes in order to minimize both prediction errors and costs associated 

with measurement, analysis, and prediction.  

 

A number of methods are available to extrapolate information that differ in the key processes 

involved (King 1991; Jarvis 1995). There are three main classes of extrapolation methods: (1) 
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nonspatial, (2) spatially implicit, and (3) spatially explicit (Peters et al. submitted). These 

methods differ in the amount of spatial information required to carry out the analysis. In most 

cases, the objective of the extrapolation is to obtain a single estimate for an entire landscape. 

 

Nonspatial methods are the simplest and contain the fewest parameters. These methods include 

linear extrapolation where fine-scale information is extrapolated to broad-scales using weighted 

averages based on the area covered by each type of landscape unit. The classic example is the 

extrapolation of net primary production from sampled plots to biomes (Leith and Whittaker 

1975). Other extrapolation techniques are possible (King 1991). In each case, it is assumed that 

spatial location on a map and quantification of contagious processes are not needed for the 

extrapolation.  

 

Spatially implicit methods include the importance of spatial location in both the input and 

response variables. For example, gap models that simulate grassland or forest successional 

dynamics (Peters 2002; Keane et al. 2001; Symstad et al. 2003), nutrient cycling models (e.g., 

Burke et al. 1991, 1997), and most biogeographic models currently used to predict vegetation 

types at regional to global scales (e.g., Neilson and Running 1996; Melillo et al. 1995) are 

spatially implicit methods. These models typically simulate grid cells that differ in properties 

such as soil texture, precipitation, and temperature. Simulations are conducted for each grid cell 

containing a unique combination of parameters. Spatial location is important to the extrapolation 

because location is used to determine the value of some parameters, but it is assumed that the 

important processes occur within a grid cell; thus connections among grid cells are assumed to 

be negligible.  
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Spatially explicit or interactive methods are the most complex in that they require information on 

spatial location as well as on neighborhood processes. Familiar examples of spatially explicit 

models include cellular automata (Green et al. 1983; Hogeweg 1988), dispersal models that 

compute dispersal likelihood in terms of the distance between the target and source sites (Coffin 

and Lauenroth 1989, 1992; Clark et al. 1998, 1999; Rastetter et al. 2003), and models of 

contagious disturbances such as fire and disease (Turner et al. 1989b; Miller and Urban 1999). In 

each case, simulations are conducted for grid cells that differ in properties such as soil texture 

and climate. Furthermore, both processes within and among grid cells are important to ecosystem 

dynamics. Parameter values of a grid cell may depend upon either the identity of its neighboring 

cells, or specific exchanges of material or individuals among neighboring cells may be modeled 

explicitly. 

 

Each of the three classes of scaling methods has tradeoffs in errors associated with uncertainty. 

Studies of model error have shown that simple models are often optimal when information is 

imprecise (O'Neill 1979; Reynolds and Acock 1985).  However, more complicated models may 

be better when dynamics are complex and extensive data are available; yet these data may be 

expensive to collect and contain a number of small errors that accumulate to produce 

disproportionately large uncertainties in predictions (Gardner et al. 1980; Li and Wu Chapter 9 

this volume).  Thus, there are relative trade-offs between errors of omission (high in simple 

models, low in complex models) and errors of commission (high in complex models, low in 

simple models) for each method. In general, one should select the simplest method possible that 
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represents the key processes influencing system dynamics in order to minimize both types of 

error (Peters et al. submitted).  

 

Typically, researchers select one method for an entire landscape that depends on the question 

being addressed. However, the use of one method likely results in high errors of omission for 

some parts of a landscape, and high errors of commission for other parts. For example, a 

nonspatial extrapolation will result in high errors of omission for the areas on the landscape 

where contagious processes are particularly important, such as topographic lows where water 

accumulates and production is higher than the landscape average. Similarly, using a spatially 

explicit method for an entire landscape will result in high errors of commission associated with 

including unnecessary and poorly estimated parameters for those areas where spatial location and 

contagious processes are relatively unimportant, such as level uplands where dynamics are best 

explained by precipitation and soil texture.  Because each parameter has an associated 

uncertainty in its estimate, including unnecessary parameters increases the overall uncertainty of 

the prediction (Peters et al. submitted). 

 

Because landscapes consist of a mosaic of sites differing in spatial heterogeneity and degree of 

connectedness, we expect that a combination of scaling methods is needed to simplify complex 

landscapes in order to minimize errors of prediction. This general approach is similar to 

hierarchical scaling strategies (Wu 1999). Linear extrapolations may be most appropriate for the 

parts of a landscape that are relatively homogeneous. Spatially implicit or explicit approaches are 

expected to be necessary for those parts with high spatial heterogeneity or connectedness with 

neighboring sites (Peters et al. submitted).  
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We focus on the important and timely problem of scaling patterns in carbon sequestration and 

dynamics across semiarid and arid ecosystems to illustrate our approach of combining these 

methods to simplify landscapes. Recent estimates suggest that the carbon sink in grasslands and 

shrublands in the coterminous U.S. from 1980-1990 may be similar to that in forests (Pacala et 

al. 2001). In particular, shrub-dominated ecosystems are important contributors to carbon sinks 

due both to their extensive area (44% of the total land area of the U.S.) and to their high potential 

sequestration rates (Hibbard et al. 2001). The area dominated by shrubs and other woody plants 

has increased worldwide over the past century because of complex interactions among a number 

of factors, including effects of large and small animals, drought, fire, climate change, and 

changes in soil properties (Humphrey 1958; Schlesinger at al. 1990; Allred 1996; Van Auken 

2000). Increases in above- and belowground carbon storage as well as increases in emissions of 

NOx and non-methane hydrocarbons (e.g., terpenes, isoprene, and other aromatics) have resulted 

from the replacement of grasses by shrubs (Archer et al. 2001; Hartley and Schlesinger 2001; 

Jackson et al. 2002).  

 

Estimates for carbon sinks and losses in areas encroached upon by woody plants have a high 

degree of uncertainty because of landscape-scale variation in edaphic and topographic factors 

(Pacala et al. 2001; Hurtt et al. 2002). Furthermore, spatial patterns in carbon and other soil 

nutrients may be complex because of processes such as wind and water erosion, and animal 

redistribution of plant material and nutrients (Schlesinger and Pilmanis 1998).  Our specific 

objectives were: 1) to illustrate the use of each of the three scaling methods for extrapolating 

estimates of carbon dynamics based on aboveground net primary production (ANPP) for arid and 
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semiarid landscapes, 2) to examine the key processes and factors leading to heterogeneity in 

carbon dynamics at the landscape scale, and 3) to develop a framework to identify the landscape 

locations where each scaling method is most appropriate.   

II. System description 

The study was conducted using data collected from the Jornada Basin Long Term Ecological 

Research site (JRN) located in southern New Mexico (32.5oN, 106.8oW). The Jornada consists of 

the Jornada Experimental Range, a 78,266-ha area administered by the USDA Agricultural 

Research Service, and the adjacent Chihuahuan Desert Rangeland Research Center, a 25,900-ha 

area administered by New Mexico State University.  The JRN is characteristic of the northern 

Chihuahuan Desert with long term (80 y) mean annual precipitation of 248 mm/y (S.D. = 87) and 

mean monthly temperatures ranging from 3.8oC in January to 26.1oC in July.  Elevation ranges 

from 1200m in the basin to > 2500 m in the mountains.  

 

Similar to many other arid and semiarid ecosystems, a key characteristic of the JRN is that much 

of the area has changed from perennial grasslands to shrublands within the past 100 years 

(Buffington and Herbel 1965; Gibbens and Beck 1988; Fredrickson et al. 1998). In many areas 

within the JRN basin, black grama (Bouteloua eriopoda) dominated grasslands have been 

replaced by one of three shrub species (honey mesquite [Prosopis glandulosa], creosote bush 

[Larrea tridentata], and tarbush [Fluorensia cernua]). Grasslands dominated by tobosa (Hilaria 

mutica) commonly occur in low-lying areas. Currently at the JRN, communities dominated by 

these five species occur on  >90% of the study area (Gibbens et al. in prep). Subdominant plants 

include annual and other perennial grasses, forbs, subshrubs, and other shrubs. 
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III. Extrapolation of ANPP from plots to a landscape 

We used aboveground net primary productivity (ANPP) sampled seasonally in three exclosures 

in each of the five major vegetation types as our plot-level estimates of changes in carbon storage 

(Huenneke et al. 2001, 2002). Within each vegetation type, exclosures were selected to represent 

the range of variability in production of that type rather than as replicates of average conditions. 

Each exclosure was sampled using 49 1-m2 quadrats. Methods of sampling are described in 

detail in Huenneke et al. (2001; 2002). Annual values of ANPP from 1990-1998 were averaged 

across exclosures and years to obtain a long term estimate for each vegetation type 

(http://jornada-www.nmsu.edu). We then used one of three methods (nonspatial, spatially 

implicit, spatially explicit; Peters et. al. submitted) to illustrate how to extrapolate these plot-

level estimates to the entire Jornada landscape. 

 

a. Nonspatial 

The average plot-based estimate of ANPP for each of the five vegetation types was extrapolated 

nonspatially to the landscape scale using a weighted-averaging method (Table 1). Average 

ANPP from plot-scale estimates ranged from 91 g/m2/y in a shrub-dominated area (tarbush) to 

222 g/m2/y in an upland perennial grassland (black grama). These ANPP values for each 

vegetation type were weighted by the area associated with that type using an eight-ha resolution 

map generated from field surveys conducted in 1998 (Gibbens et al. in prep). Most of the  area 

(90%) is dominated by one of two shrubs (creosotebush, honey mesquite).  Only 2% of the area 

is currently dominated by the perennial grass, black grama, a species that historically dominated 

much of the area. Using this weighted averaging method, the average ANPP for the JRN is 130 

g/m2/y during the period of sampling (1990 to 1998). 
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Nonspatial extrapolation of ecosystem variables from plots to larger areas is useful for coarse-

scale comparisons where heterogeneity within landscape units is less important than large-scale 

patterns. For example, comparisons of biomes often use nonspatial extrapolations (Lieth and 

Whittaker 1975; Webb et al. 1978; Knapp and Smith 2001). Tabular estimates of ANPP for each 

vegetation type also allow comparisons with similar types of vegetation within the region as well 

as with other types of grasslands and shrublands (Lauenroth 1979; Le Houérou et al. 1988).  

However, nonspatial methods have limited utility when dealing with specific parts of a 

heterogeneous landscape where variation in ANPP is high (Huenneke et al. 2001, 2002). For 

example, grazing management that assumes a constant, uniform estimate of ANPP for an entire 

landscape will result in over-use in areas with below-average ANPP and under-use in areas with 

high ANPP. 

 

b. Spatially implicit  

Spatially implicit methods combine plot-scale estimates of carbon with spatial databases in a 

geographic information system.  For the JRN, we extrapolated the ANPP estimate for each 

vegetation type (Table 1) using the vegetation map of 1998 (Fig. 1; Gibbens et al. in prep). This 

spatially implicit map shows the spatial distribution of ANPP across the JRN (Fig. 2). Although 

total ANPP is the same as for the nonspatial approach, large-scale patterns are evident that 

cannot be discerned from a tabular format (Table 1).  For example, remnant grassland areas 

dominated by black grama are located primarily in the west and south whereas tobosa grasslands 

are located along a previous channel of the Rio Grande that went through the center of the JRN 
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from northwest to southeast ca. 1.6 million years ago (Mack et al. 1996). Low productivity 

tarbush sites are mostly located in the southeast.  

 

Another spatially implicit method could be used that includes spatial variation in environmental 

factors in the extrapolation. Plot-scale measures of soil texture, elevation, and precipitation could 

be used with ANPP estimates to develop a regression equation for each vegetation type.  Spatial 

maps of these same variables (soil texture, elevation, and precipitation) could then be used with 

the regression equations to extrapolate ANPP across the landscape (Fig. 3). Although we have 

not conducted this analysis, this spatially implicit approach would provide a more spatially 

resolved map than the previous example (Fig. 2), and would account for potential variation in 

ANPP as related to variation in environmental factors.   

 

Spatially implicit methods have been used frequently in arid and semiarid landscapes where 

environmental heterogeneity is often recognized as important. Spatial variation in ANPP has 

been documented because of variation in elevation and soil properties that likely affect water 

availability, although the redistribution of water was not actually measured (Ludwig 1986, 

1987). Patterns in other properties of vegetation have been found associated with landforms, 

microtopography, and soils (Stein and Ludwig 1979; Wieranga et al. 1987; Wondzell et al. 1990, 

1996; Wondzell and Ludwig 1995). Soil properties, including carbon, are often extrapolated 

from soil pits and field surveys selected to represent characteristic locations on a landscape (Gile 

et al. 1981). Although many of these earlier efforts did not publish maps, all of the sampling 

methods were spatially implicit in that the design was stratified by the environmental variation 

and the results were extrapolated to similar locations on the landscape. 
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Spatially implicit methods of extrapolation are increasingly used as the availability of spatial 

databases and geographic information systems analyses increases. Recent examples include the 

extrapolation of above- and belowground carbon pools across the JRN landscape from 1858 to 

present using maps of soils and precipitation as inputs to the CENTURY simulation model 

(Mitchell et al. 2002). Spatial variation in field estimates of carbon pools have also been 

extrapolated to the landscape scale using maps of soils and landforms (Monger et al. submitted). 

Spatial variation in shrub invasion and loss of perennial grasses with implications for changes in 

biomass quantity and vertical distribution through time have also been related to maps of soil 

texture, precipitation, elevation, and other factors (Yao et al. 2002).  Identification of landscape 

locations where shrub invasion has occurred most rapidly allows management efforts to focus on 

these sensitive areas.  

 

c. Spatially explicit 

Spatially explicit approaches include landscape location as well as neighborhood or contagious 

processes, such as seed dispersal or wind and water redistribution of soil particles. These 

approaches require information on the movement or transfer of materials, energy or information 

within and among spatial units on a landscape. Because these transfers are difficult and costly to 

measure for large areas, field experiments typically focus on specific areas of interest rather than 

attempting to instrument an entire landscape. For example, Schlesinger and Jones (1984) related 

patterns in plant biomass to localized runoff and run-on areas in the Mojave Desert. Recent 

experiments at the JRN have also documented the importance of water redistribution to patterns 

in vegetation (Wainwright et al. 2000; 2002).  
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Alternatively, spatially explicit simulation models can be used to represent large areas if 

sufficient information is known for model parameterization and validation. Peters and Herrick 

(1999) used a spatially explicit simulation model to examine the importance of seed dispersal to 

the recovery of perennial grasses following shrub invasion on sites with different vegetation and 

soil properties. Plot-scale parameters were combined with spatial maps of soil texture and 

precipitation as well as the movement of seeds among plots to extrapolate model results to a 

landscape. Spatially explicit simulation models can also be combined with regression models to 

simulate ecosystem dynamics (Reynolds Chapter 13). 

 

In general, spatially explicit models are becoming increasing popular in ecology as computer 

limitations decrease and the quality and quantity of spatial information increases (e.g., Dunning 

et al. 1995; Schimel et al. 1997; He and Mladenoff 1999).  However, complex models that 

require a large number of parameters that are difficult to estimate, and thus, have greater errors 

associated with them and are more difficult to validate than simple models (Oreskes et al. 1994; 

Rykiel 1996). 

 

IV. What makes a landscape complex? 

Landscapes are complex because of interactions among contagious or neighboring processes and 

spatial variation in the physical template and disturbance regime.  Contagious processes are 

related to three main vectors of dispersal (water, wind, animals) that redistribute seeds, nutrients, 

soil particles, and water. The physical template includes factors such as soil properties (texture, 

depth), precipitation, temperature, and elevation. The disturbance regime includes both natural 
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(e.g., fire) and management-related disturbances (cultivation, roads, herbicide). Landscapes are 

complex because the importance of these processes, environmental factors, and disturbances 

varies for different sites. On some sites, spatial heterogeneity in soil texture can be the most 

important factor for explaining ecosystem dynamics whereas the redistribution of water may be 

more important on other sites. Furthermore, more than one contagious process or environmental 

factor may be important for some sites such that complex interactions among processes 

determine ecosystem dynamics. 

 

In arid and semiarid ecosystems, patterns in ecosystem dynamics and ANPP are complex at the 

landscape scale because of a number of processes that are also variable at the landscape scale. 

Spatial variation in water redistribution at the landscape scale is most important along elevational 

gradients where channels and arroyos move water from upslope to downslope (Fig. 4).  Spatial 

variability in soil properties interacts with variability in water redistribution to generate complex 

patterns in ANPP. The result is that upper alluvial fans or bajadas dominated by creosotebush 

with thin, rocky soils have higher runoff, less available water, and lower ANPP than downslope 

positions. The extreme situation occurs when water accumulates in playas on soils with high 

water holding capacity and high plant production (Huenneke et al. 2002). Because water is an 

important dispersal agent for seeds as well as soil particles, plant litter, and nutrients, these 

materials are also expected to be heterogeneously distributed across the landscape. 

 

Wind redistribution of particles is also unevenly distributed at the landscape scale with important 

consequences for patterns in ANPP (Fig. 4). Sandy soils dominated by honey mesquite are more 

susceptible to wind erosion than other soil-plant community combinations (Gibbens et al. 1983; 
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Gillette and Chen 2001). Soil particles eroded from interdune areas in mesquite-dominated 

systems are deposited both locally in dunes and at large distances in vegetation types located 

downwind. 

 

The effects of animals on ecosystem dynamics and ANPP are also non-uniformly distributed 

across a landscape (Fig. 4). Both small and large animals are effective dispersal agents of seeds 

and nutrients.  Densities of small animals are often related to soil properties and vegetation type 

(Kerley and Whitford 2000). Furthermore, small animals, such as ants and rodents, are selective 

in the seeds collected with differential effects on seed availability and plant species dynamics 

(Inouye et al. 1980). Large animals, such as cattle, are effective dispersal agents of mesquite 

seeds, and likely played an important role in the expansion of this shrub into perennial 

grasslands. Spatial heterogeneity in ANPP also results from non-uniform grazing patterns by 

cattle (Paulsen and Ares 1962; Valentine 1970). Areas currently excluded from cattle often have 

higher plant production than adjacent grazed areas. Low plant production also occurs near 

watering holes where grazing and trampling are intense (Fusco et al. 1995; de Soyza et al. 1997; 

Nash et al. 1999). 

 

Spatial heterogeneity in ANPP also occurs as a result of spatial variation in disturbances. Fire 

occurs most frequently in grassland systems with high production and continuous fuel load. 

Although low production occurs immediately following a fire, high production is possible later 

in the season if rainfall is high (Drewa et al. 2001). By contrast, low production can be 

maintained if fire occurs during or before a drought. Other types of disturbances, such as 

herbicide treatments, cultivation, road and building construction are also heterogeneously 
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distributed across a landscape (Fig. 4). These disturbances affect patterns in ANPP both locally 

on the disturbed area as well as in adjacent areas through modifications to wind and water 

erosion.  

 

V. Simplifying complex landscapes: a new conceptual framework 

 

In our conceptual framework, landscapes consist of a mosaic of sites where spatial variation in 

the environment and contagious processes may or may not be important in understanding and 

predicting ecosystem dynamics. Our approach to simplifying complex landscapes is to determine 

the locations on a landscape where spatial information and contagious processes must be known 

in order for predictions to be accurate. Predictions for the remainder of the landscape can be 

obtained using estimates from representative sites that are extrapolated to similar areas using 

either nonspatial or spatially implicit methods (Peters et al. submitted). One approach to 

identifying these locations and to determining the important spatial processes is to combine 

remotely sensed images with field data and spatial databases residing in a geographic 

information system.   

For example, remotely sensed images combined with field estimates of ANPP can be 

used both to determine the most appropriate vegetation spectral index for each of the major 

ecosystem types, and to identify the locations (“hot spots”) with extremely low and high ANPP 

values for each ecosystem type compared with the rest of the landscape. Spatial databases can be 

used to provide insight into the key processes operating to generate these extremely low or high 

values. For example, digital elevation models can be used to determine the locations where water 

is expected to runoff as a result of steep slopes or where water accumulates when the slopes are 
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shallower than the surrounding locations. Spatial databases of animal distribution can be 

generated using average stocking densities combined with the location of exclosures (no animal 

activity) and water sources (locations of intense animal activity). Correlating vegetation indices 

from the remotely sensed images with the spatial databases can confirm the greater importance 

of spatial processes at these key locations compared with the rest of the landscape. Uncertainty 

analyses can then be conducted to identify the major sources of uncertainty, and to explore the 

effects of reducing the uncertainty in predictions by including spatial databases. Identifying these 

locations and key processes is the first step in simplifying complex landscapes in order to 

prioritize management decisions and to guide research questions and experimental designs. 

 
VI. Summary and Conclusions 

 
Complex landscapes pose a critical challenge to ecologists. Addressing problems at the 

landscape scale requires the extrapolation of information from plot-scale studies. Three general 

classes of extrapolation methods exist that differ in the amount of spatial information required. 

For a given problem, ecologists typically use one method for all parts of a landscape. However, 

the use of one method likely results in high errors of omission for some parts of a landscape, and 

high errors of commission for other parts, thus resulting in high uncertainty in predictions for the 

entire landscape. An alternative approach was developed that simplifies complex landscapes into 

different parts where each extrapolation method is most appropriately used. This approach 

reduces the uncertainty in predictions at the landscape scale, and provides guidance to ecologists 

and land managers interested in the key parts of the landscape where spatial variation and 

contagious processes have the greatest impact on ecosystem dynamics. This approach is 

expected to also be useful for other ecosystems where complexity in landscape structure and 
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spatial processes are important.
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Table 1. Vegetation type by ANPP (g/m2 from Huenneke et al. 2002) and area to obtain 

weighted average for the JRN. ANPP is long-term average and standard deviation of all dates 

and years. Area extent (ha) obtained from Gibbens et al. (in prep). Areas not dominated by these 

vegetation types (others) were excluded from the analysis. 

Vegetation type 

Mean ANPP 
(g/m2/y) 
[standard 
deviation] 
 

Areal extent (ha) 

Black grama 
grasslands 229 [114] 699 

Creosotebush 
shrublands 139 [51] 14,485 

Honey mesquite 
shrublands 140 [60] 34,387 

Tarbush 
shrublands 96 [20] 3,826 

 
Tobosa playa 
grasslands 

194 [214] 844 

Weighted average 143   
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VIII. Figure legends 
 
Fig. 1. Site map showing location of Jornada LTER within New Mexico and the U.S. 

Study site insert shows location of the 15 areas sampled for ANPP.  

 

Fig. 2. Spatially implicit extrapolation of ANPP to the JRN landscape using the 

vegetation map and plot-based estimates.  Both creosotebush and mesquite have the 

same average ANPP (130 g/m2) and are shown in the same color. 

 

Fig. 3. Spatially implicit extrapolation of ANPP to the JRN landscape using a regression 

equation between plot-based measures of ANPP, soil texture, average precipitation, 

and elevation. The regression equation is then used to predict ANPP for the entire 

landscape using maps of the explanatory variables. 

 

Fig. 4. Aerial photo showing complex landscapes at the JRN. Some areas near the 

mountains are dominated by water erosion as shown by the arroyos. Other areas on 

sandy soils are dominated by wind erosion as shown by dunes. Effects of animals on 

low plant production occur near water sources (wells). Human-caused disturbances are 

also non-uniformly distributed across the landscape. Areas with homogeneous 

vegetation and soils also occur. 
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Step 1. Develop regression equation using plot-based measures 

Step 2. Use regression equation and maps of explanatory 
variables to predict spatial patterns in ANPP 

 

 

elevation

ANPP = f(SOIL, PRECIPITATION, ELEVATION)

site ANPP soil texture class elevation annual precipitation
(g/m2/y) (meters a.s.l.) (mm/y) (1979-1997)
(1990-1998)

Creosote
CCALI 91 gravelly fine sandy loam 1374 288.0
CGRAV 189 gravelly fine sandy loam 1377 289.6
CSAND gravelly fine sandy loam 1355 277.8

Black grama
GBASN 171 fine sandy loam 1316 247.9
GIBPE 194 loamy sand, fine sandy loam, fine sand 1323 245.3
GSUMM 322 loamy sand, fine sandy loam, fine sand 1387 291.2

Mesquite
MNORT 184 loamy fine sand 1329 275.1
MRABB 115 loamy fine sand 1325 276.9
MWELL 122 loamy sand, fine sandy loam, fine sand 1323 247.4

Playa grass
PCOLL 224 clay loam 1312 248.0
PSMAL 266 fine sandy loam, loamy fine sand, sandy loam 1326 255.8
PTOBO 92 fine sandy loam, loam 1312 274.3

Tarbush
TEAST 107 fine sandy loam, loam 1314 246.9
precipitation
 35

Predicted
soil texture
 ANPP 
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