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Abstract

We discuss a new conceptual framework for arid and semi-arid systems that accounts for

nonlinear dynamics and cross scale interactions in explaining landscape patterns and dynamics.

Our framework includes a spatial and temporal hierarchy, and five key interacting components

that connect scales of the hierarchy and generate threshold behaviors: (1) historical legacies that

include climate, disturbance, and management regimes, (2) dynamic template of patterns in

ecological variables and spatial context, (3) vertical and horizontal transport processes (fluvial,

aeolian, animal), (4) rate, direction, and amount of resource redistribution between high and

low resource areas, and (5) feedbacks among plants, animals, and soils. We illustrate how this

framework can be used to understand, forecast, and manage ecological systems that exhibit

nonlinear dynamics across a range of spatial and temporal scales. This paper provides the

foundation for a series of papers from the Jornada Experimental Range ARS-LTER research

site in southern New Mexico, USA that support this new conceptual framework.
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1. Introduction

Broad scale conversion of grasslands to shrublands has occurred throughout arid
and semi-arid regions of the world over at least the past century (Buffington and
Herbel, 1965; York and Dick-Peddie, 1969; Gibbens et al., 2005). Although a
number of factors driving these conversions have been identified, there is not a clear
consensus on the key factors or processes that produce different outcomes under
seemingly similar conditions (Peters et al., in press a). The two most commonly cited
drivers of this conversion are the separate and interactive effects of drought and
livestock overgrazing (Archer, 1994; Buffington and Herbel, 1965; Grover and
Musick, 1990; Humphrey, 1958; Van Auken, 2000). However, recent analyses show
that these two factors are insufficient to account for observed responses in the
Chihuahuan Desert of North America (Peters et al., unpublished data). For
example, although the extreme drought of the 1950s had clear and measurable
impacts on vegetation (Herbel et al., 1972), spatial and temporal variation in grass
cover cannot be explained by the drought (Peters et al., unpublished data). In some
locations, grass cover was reduced to zero before the drought occurred, and in other
locations, grass cover remains high today. Similarly, intensive grazing by livestock in
the 1800s and early 1900s led to decreased grass cover and increased shrub density
through time (Paulsen and Ares, 1962). However, protection from cattle using
exclosures was often unsuccessful in limiting the further spread of shrubs across the
landscape (Peters et al., in press a, b). Including other factors that can influence
grass–shrub interactions, such as changes in small animal activity, reductions in fire
frequency, and directional changes in climate, is insufficient to explain this landscape
scale heterogeneity in vegetation dynamics.

In this paper, we investigate explanations for this high spatial and temporal
variation in vegetation dynamics for arid and semi-arid systems. We briefly describe
a conceptual framework that focuses on factors and processes that generate
heterogeneous spatial responses and nonlinear dynamics through time. We provide
support for this framework from the other papers in this special issue with a focus on
research conducted at the Jornada Experimental Range ARS-LTER site in southern
New Mexico, USA (32.51N, 106.81W). Our goal is to improve our understanding of
these systems in order to guide managers and decision-makers in effective use of arid
and semi-arid resources and to provide useful forecasts of future system dynamics.
2. Landscape linkages conceptual framework

Our framework builds on existing conceptual frameworks of grass–shrub
interactions in arid and semi-arid systems (i.e., Archer, 1994; Ludwig et al., 1997;
Noy Meir, 1973; Reynolds et al., 1997, 2004; Schlesinger et al., 1990), yet explicitly
includes five key elements that generate nonlinear dynamics (Fig. 1). Previous
frameworks focused either on vertical redistribution of water and differences in
rooting depth of grasses and shrubs (Walter, 1971, 1973) or consequences of grass or
shrub plants or bare areas to horizontal movement of water and resulting feedbacks
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Fig. 1. Conceptual framework for arid and semi-arid systems includes a spatial and temporal hierarchy

and five key interacting elements (historical legacies, dynamic template, transfer processes, resource

redistribution, and plant–soil–animal feedbacks) that lead to nonlinear dynamics, thresholds, and cross

scale interactions (depicted by the broad arrow that crosses spatial scales). Climate and disturbance are

drivers that influence these interactions across a range of spatial and temporal scales. Our spatial hierarchy

includes five spatial scales, although only three are shown for clarity (plant-interspace, plant assemblage,

landscape). Spatial variation in vegetation and landforms at the Jornada Experimental Range are shown

in the background image. The Jornada is bounded by the San Andres Mountains (right) and the Rio

Grande (left with private irrigated land in green).
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to vegetation (Schlesinger et al., 1990). More recent frameworks have combined
vertical and horizontal redistribution of water at the plant scale (Breshears and
Barnes, 1999) or focused on the importance of water runoff at patch scales to
landscape scale processes (Ludwig et al., 2005). Multiple scales have also been
examined (Reynolds et al., 1997, 2004) and the importance of thresholds has been
identified (Archer, 1994).

Our framework differs from those mentioned above because we focus on cross
scale interactions and nonlinear dynamics that result from five key interacting
elements (Fig. 1). We combine a hierarchical framework of increasingly larger spatial
and temporal units with a process framework that provides connections across
scales. In this paper, we focus on spatial scales and recognize that temporal scales
have a similar hierarchy. For example, temporal variability in water availability
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results from variation in climate and weather interacting with vegetation
structure, the physical environment, and vegetation-soil water feedbacks at multiple
scales to influence variation in ecosystem patterns through time (Snyder and
Tartowski, 2006).

2.1. Hierarchical framework

Our spatial hierarchy includes five major scales, although we recognize that a
continuum of scales is possible (see O’Neill et al., 1986). Our smallest spatial unit is
an individual plant and its associated bare soil interspace. Smaller units (e.g., fungi)
are often associated with plants and affect individual plant success as well as have
consequences for vegetation dynamics at larger spatial scales (Lucero et al., 2006).
These plant–fungal interactions are increasingly recognized as important to whole
plant morphology, biomass, and reproductive success with consequences for
ecological responses at broader spatial scales (Lucero et al., 2006).

The second scale of interest beyond an individual plant is a patch, a group of
interacting plants and their interspaces. Patches throughout the Chihuahuan Desert
are often dominated by one of several species of shrubs (e.g., mesquite [Prosopis

glandulosa], creosotebush [Larrea tridentata], tarbush [Flourensia cernua]) or
perennial grasses (e.g., black grama [Bouteloua eriopoda], tobosagrass [Hilaria

mutica]). Patches vary in size from several plants (o 5m2) to several hundred
individuals (41000m2).

Patch mosaics, the third scale, are composed of groups of patches dominated by
different species or life-forms and inter-patch areas. At the fourth scale, landscape
units are groups of patch mosaics that are interconnected, but distinct soil-defined
units or ‘‘ecological sites’’ (McAuliffe, 1994; Natural Resources Conservation
Service, 1997). The fifth and final scale for our purposes is a geomorphic component
that consists of a number of interacting landscape units. These areas are often
defined by parent material and landscape position. Common geomorphic
components in the Basin and Range physiographic province of the south-western
United States include mountain fronts, alluvial fans and piedmont slopes, and basin
floors composed of alluvial, fluvial, or lacustrine sediments. Thus, arid and semi-arid
landscapes consist of a mosaic of interacting plants, patches, patch mosaics,
landscape units, and geomorphic components.

2.2. Key elements that connect spatial units

Connectivity among spatial units is an important determinant of system dynamics.
Five key elements interact to connect scales. These elements influence the
redistribution of resources through time and across space and affect variation in
vegetation patterns and dynamics (Fig. 1). In many cases, connectivity among spatial
units determines the relative importance of each of the five key elements in affecting
threshold behavior and cross scale interactions: (1) historical legacies, (2) spatial
context and patterns in ecological variables (i.e., dynamic template), (3) transport
processes, (4) resource redistribution between areas of high and low resources, and
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(5) feedbacks among plants, animals, and soils. Climate and disturbance interact
with these key elements to influence spatial and temporal variation in ecological
patterns and dynamics.

Historical legacies include natural and human impacts with long-lasting imprints
on ecosystem patterns and dynamics (Foster et al., 2003; Knapp and Soulé, 1998).
Legacies, such as historic disturbances, have important effects on transport of
materials through their influence on the dynamic template. For example,
disturbances can impact dynamic surface soil properties and cause them to be more
easily eroded by water or wind (Johansen et al., 2001; Whicker et al., 2002). Legacy
effects have most often been attributed to human activities, land use, and drought
within the past century (e.g., Herbel et al., 1972; Rango et al., 2002). However,
historic human activity, such as use of mesquite by the Jornada Mogollan in
850–1400 AD, undoubtedly also plays an important role in more recent ecosystem
dynamics (York and Dick-Peddie, 1969). Recent studies suggest that mesquite
expansion may have occurred in the early 1900s even in the absence of widespread
livestock grazing because of changing human activities (Fredrickson et al., 2006).
Interactions between human activity and mesquite expansion are complex and likely
variable through time and across space as settlement patterns changed between
indigenous people and those of European descent (Fredrickson et al., 2006).

Dynamic template refers to the location and characteristics of a study area relative
to its surroundings. These characteristics include variables with a very slow rate of
change (e.g., geomorphology, parent material, and topography) as well as variables
with relatively fast rates of change that can be influenced by other system properties
through feedback mechanisms (e.g., soil organic matter, vegetative cover and
composition, and distribution of spatial units in the hierarchy). The dynamic
template influences patterns in water and nutrient availability and consequently
affects distribution patterns and dynamics of plants, animals, and microbes (Monger
and Bestelmeyer, 2006). This template occurs across a range of spatial scales from
fine scale patterns between plants and their associated interspaces to broad scale
geomorphic provinces (Monger and Bestelmeyer, 2006). The history of research at
the Jornada has reinforced our understanding that vegetation dynamics are spatially
explicit (Peters et al., in press (a)). Recent studies at the Jornada illustrate the
importance of the dynamic template regarding spatial variation in shrub invasion
and grass recovery. The very slow recovery of black grama in a livestock exclosure
following repeated shrub removal is likely related to the low density of black grama
plants within the exclosure and in the surrounding area (Peters et al., unpublished
data). Even in the absence of competing shrubs, we do not anticipate grass recovery
until water and nutrients are sufficient, and seeds from adjacent areas disperse into
the local area of the exclosure (Havstad et al., 1999).

Transport processes in arid and semi-arid systems include fluvial (water), aeolian
(wind), and animal components. The materials redistributed horizontally and
vertically as a result of these transport processes are water, soil particles, nutrients,
and plant material (i.e., seeds, litter).

Vertical movement of water in the soil profile is influenced by competing
mechanisms, such as bare soil evaporation and transpiration of competing plants.
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Erosion and deposition by water occurs across multiple spatial and temporal scales
(Parsons et al., 2003; Rango et al., 2006; Schlesinger and Jones, 1984; Wainwright et
al., 2002), and has important effects on variability in vegetation dynamics and soil
properties (Wondzell et al., 1996). Many of the early remediation attempts at the
Jornada involved the redistribution and concentration of water, which affected
variation in vegetation dynamics (Rango et al., 2002). Although many of these
treatments were deemed unsuccessful initially, their effects on current vegetation
patterns can be observed in aerial photographs and documented by ground
measurements (Rango et al., 2006).

Redistribution of soil particles, nutrients, and seeds by wind also has important
effects on variation in vegetation patterns and dynamics. Redistribution of soil
particles and nutrients by wind is particularly important for sandy soils; other soils
often have physical and biotic crusts to protect them from erosion (Okin and
Gillette, 2001). Controls on and consequences of aeolian processes occur across a
range of spatial scales, from plants to patches and regions, and influence variation in
soil and vegetation dynamics (Okin et al., 2006).

Small and large animals are effective agents of seed dispersal (in particular for
mesquite) and for the redistribution of soil resources. Seed dispersal by livestock is
often considered a key process promoting shrub invasion into perennial grasslands
over the past 150 years in southern New Mexico (Buffington and Herbel, 1965).
However, mesquite invasion and expansion likely occurred prior to this time as a
result of complex human–environment interactions that changed through time
(Fredrickson et al., 2006). Indigenous peoples often used mesquite in their diet; thus,
mesquite during this time period may have been limited in its spatial distribution to
localized parts of the landscape (York and Dick-Peddie, 1969). These localized areas
may have become foci and seed sources for mesquite expansion upon arrival of
Europeans and subsequent reduction in selection pressures on this species
(Fredrickson et al., 2006). Thus, current spatial patterns of mesquite may be a
consequence of historic transport processes that have fundamentally changed
through time.

Resource redistribution between areas of high and low resources occurs across a
range of scales. Effects of feedbacks among plants, animals, soil, and water on
resource redistribution have been well-documented across a range of spatial and
temporal scales for arid and semi-arid systems (e.g., Fredrickson et al., 2006; Okin et
al., 2006; Rango et al., 2006; van de Koppel et al., 2002). At the plant-interspace
scale, the concentration of resources beneath individual shrubs results in a positive
feedback to shrub survival and formation of islands of fertility (Schlesinger
et al., 1990). Similarly, concentration of water under plant canopies can result in
‘‘islands of hydrologically enhanced productivity’’ (Rango et al., 2006). High
infiltration rates under shrub canopies result from protection from raindrop
impact and reduced compaction (Schlesinger et al., 1999; Wainwright et al., 1999,
2000). Water and nutrients are also concentrated by stemflow and throughfall,
resulting in increased plant available water. At a patch scale, the distinctive ‘‘striped’’
patterns in vegetation on shallow slopes result from the accumulation of water
beneath herbaceous plants with feedbacks to plant establishment and growth
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(HilleRisLambers et al., 2001; Ludwig et al., 2005). Similarly, beads or small patches
of plants on bajadas with subtle reductions in elevation can increase shrub growth
and promote infiltration with feedbacks to the herbaceous vegetation (Peters et al.,
2004b). Interactions between small or large animals and vegetation often result in
feedbacks to the animals or plants across a range of scales (Brown and Morgan
Ernest, 2002; Walker et al., 1981). At a broad scale, land–atmosphere interactions
following desertification and widespread woody plant expansion can result in
decreased rainfall and higher albedo with consequences for subsequent broad scale
shifts between grasses and woody plants (Claussen et al., 1999).

Threshold behavior has also been investigated in arid and semi-arid systems and
has consequences for variation in woody plant invasion (Archer, 1994; Breshears et
al., 2004; Davenport et al., 1998). Cross scale interactions associated with threshold
behavior were recently shown for mesquite invasion into black grama dominated
grasslands at the Jornada (Peters et al., 2004a). Three thresholds were identified
based on the prevalence of different dominant processes: (1) recruitment and growth
of mesquite shrubs within a patch, (2) spread of shrubs among patches, and (3)
expansion of mesquite dunefields associated with wind erosion. The nonlinear
propagation of mesquite through time from fine to broad spatial scales suggests the
importance of cross scale interactions that cannot be predicted based on individual
scale studies. Similarly, the reduction in perennial grass cover over a 140 year period
(1858–1998) exhibited nonlinear dynamics and threshold behavior (Gibbens et al.,
2005; Peters and Gibbens, in press).
3. Forecasting and applications to management

Forecasting spatial and temporal variation in future dynamics of arid and semi-
arid systems has often been challenging (Gao and Reynolds, 2003). Landscape scale
approaches based on our framework and that combine quantitative tools, such as
simulation models, spatial databases, and remotely sensed images, have provided a
range of forecasts that depend, at least in part, on the climatic conditions and
management regimes imposed (Peters and Herrick, 2001). We have also used
simulation models to predict the sites expected to be most sensitive to experimental
manipulations (Peters et al., in press b). However, new simulation models and
integrated experiments are needed that explicitly account for nonlinear dynamics
generated from feedback mechanisms and threshold behavior. These models and
experiments need to include both horizontal and vertical redistribution of resources
as affected by multiple, potentially interacting transport processes (wind, water,
animals) and account for historical legacies and landscape context.

Successful management of these systems requires a consideration of these
nonlinear processes and interactions. Information from plot-level, process-based
experiments has often been used to make management decisions at the landscape
scale. Our framework suggests that historic legacies and landscape context that
influence transport processes across scales can also be important, and need to be
considered in management decisions. In addition, a classification system of
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vegetation transition patterns integrated with a repeat photography database can be
used to determine different monitoring strategies based on an explicit consideration
of spatial scale (Bestelmeyer et al., 2006). Integrated frameworks for organizing,
synthesizing, and applying our science-based approach are being developed to
address multi-objective needs of assessment, monitoring, and management systems
(Herrick et al., 2006). In addition, extrapolation of information across scales, in
particular from fine scales used for experimentation to broader scales most useful to
management, requires an objective approach to determining the key processes
involved (Peters et al., 2004c). Improved forecasts and management decisions will
arise from the incorporation of a landscape linkages approach to dealing with
complex systems that exhibit nonlinear dynamics.
4. Conclusions and global applications

We discussed a new conceptual framework for understanding, forecasting, and
managing spatial variation in vegetation patterns and dynamics associated with the
conversion of grasslands to shrublands. Our framework expands upon existing
frameworks by focusing on resource redistribution (e.g., Schlesinger et al., 1990), yet
includes four additional key elements (historical legacies, dynamic template and
spatial context, transport processes, and feedback mechanisms) that interact to
create complex patterns and nonlinear dynamics and threshold behaviors across a
range of spatial and temporal scales. Our approach has applications to the
approximately 40% of the land’s surface and one-fifth of the world’s human
population that live in arid and semi-arid regions. In addition, our approach has
application to combating desertification, including its current manifestations, such as
the invasion by exotic species or noxious weeds that is occurring in many ecosystems
globally (Peters et al., 2004d). Technologies and strategies for restoration or
remediation of degraded landscapes is one of our most immediate research
challenges, and this conceptual framework provides an ecological basis for this
experimentation that is missing from previous work. Our framework also has
relevance to other types of systems where spatial and temporal nonlinearities are
important (Peters et al., 2004a).
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