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ABSTRACT 
 
Efforts to remotely sense arid land vegetation are often hindered by high reflectance of the soil background, 
mixtures of green and senescent grasses, and the prevalence of shrubs in grasslands. These issues make it difficult to 
classify vegetation or estimate percent vegetation cover. Objectives of this study were to derive estimates of percent 
cover for several vegetation classes in a 1200 ha pasture at the USDA Agricultural Research Service’s (ARS) 
Jornada Experimental Range (JER) in southern New Mexico. A stratified random sample approach was used to 
determine percent cover for 322 field plots. A QuickBird satellite image was segmented at different scales which 
resulted in image objects for which a multitude of spectral, spatial, and texture characteristics were extracted. We 
used regression trees to develop a rule base for image classification and performed conventional and fuzzy accuracy 
assessments. For classes with discrete boundaries, overall map accuracy was 73%, while accuracy values ranged 
from 81-86% using a 2.5%-5% cover boundary around each class (fuzzy accuracy assessment). This object-oriented 
multi-scale approach allowed us to extract shrubs at a fine scale and determine percent cover values for the shrub 
interspace at a coarser scale. The regression tree was an excellent tool for reducing the number of input variables 
derived from the image. Future research will include refining the predictive ability of the decision tree and 
determining the possibility of applying this model to other locations and/or to other scales.  
 
 

INTRODUCTION 
 

 Current remote sensing research at the Jornada Experimental Range is focused on determining relationships 
between ground-based and remotely sensed information at multiple scales in order to improve the assessment and 
monitoring of arid land vegetation. Remote sensing in arid conditions is often hampered by high reflectance of the 
soil background, a variable mixture of green and senescent grasses, multiple scattering due to open canopies and 
bright soils, and the prevalence of shrubs in grasslands (Okin and Roberts, 2004). These attributes can make it 
difficult to determine the proportion of grass cover even from high-resolution satellite imagery such as QuickBird. 
 Our goal was to assess an approach using object-oriented, multi-scale image analysis with regression trees for 
mapping percent vegetation cover from a QuickBird image. Specific objectives were 1) to determine shrub cover at 
a fine scale, 2) to determine percent vegetation cover at a coarser scale, 3) to perform discrete and fuzzy accuracy 
assessments.  

In object-based image analysis, the first step is image segmentation, whereby pixels are aggregated into objects 
that are homogenous with regard to spatial or spectral characteristics (Ryherd and Woodcock, 1996), whereby 
homogeneity refers to smaller within-object than between-object variance. In a second step, those objects rather than 
single pixels are classified. Object-based image analysis is proven to be very effective with high resolution imagery 
(Herold et al., 2003; Lennartz and Congalton, 2004; Thomas et al., 2003; van der Sande et al., 2003; Wang et al., 
2004), and has been applied successfully for determining shrub encroachment (Hudak and Wessman, 1998; 
Laliberte et al., 2004). In ecological studies, object-based image analysis is advantageous, because landscape patches 
or ecological sites can often be detected and multi-scale image segmentation offers added insight into ecological 
processes (Burnett and Blaschke, 2003; Hay et al., 2002). 

Classification and regression trees (or decision trees) are commonly used in remote sensing (DeFries et al., 
1998; Hansen et al., 1996; Lawrence et al., 2004). Lawrence and Wright (2001) found that the decision tree 
approach facilitated the use of ancillary data in rule-based classification. Friedl and Brodley (1997) concluded that 
classification accuracies from decision trees were consistently greater than accuracies obtained using maximum 
likelihood and linear discriminant function classifiers. The decision tree approach uses binary recursive partitioning 
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of the dataset, which is successively split into increasingly homogenous subsets until terminal nodes are reached. In 
remote sensing, the response variable for a classification tree is a categorical variable (land use/land cover class), 
and for a regression tree the response is a continuous variable (percent cover, percent canopy closure). Explanatory 
variables can be categorical or continuous (spectral response in bands, elevation, aspect, etc.). The terminal nodes of 
the tree represent the resulting land use/land cover classes; and as such, the tree results in a number of class 
prediction rules that are used to create a predictive map. 

Combining object-based classification with decision tree analysis also serves as an efficient data reduction tool. 
The object-based image analysis program eCognition (Baatz and Schaepe, 2000; Definiens, 2003) used in this study 
outputs hundreds of features that describe image objects created in the segmentation process. Those features include 
spectral, spatial, textural, and contextual (relationships between neighboring objects and objects at multiple scales) 
information. The decision tree approach is well suited to sort through numerous features and determine which best 
describe a terminal class in the regression tree.  

 
 

METHODS 
 
Study Area  

The Jornada Experimental Range (approx. elevation 1200 m) is located approximately 40 km northeast of Las 
Cruces, New Mexico in the northern part of the Chihuahuan Desert. Average monthly maximum temperatures range 
from 13° C in January to 36° C in June, and mean annual precipitation is 241 mm of which more than 50% occurs 
during July, August and September. Historically, this area was a desert grassland, but shrub encroachment by honey 
mesquite (Prosopis glandulosa Torr.), creosotebush (Larrea tridentata (Sess. & Moc. ex DC) Cov.), and tarbush 
(Flourensia cernua DC.) has led to a conversion to desert scrub. Our study occurred in a 1200 ha pasture, which 
represented most of the major vegetation communities on the basin floor of the JER. Dominant grass species 
included black grama (Bouteloua eriopoda (Torrey) Torrey), tobosa (Pleuraphis mutica Buckley), dropseed 
(Sporobolus spp.), threeawn (Aristida spp.), and burrograss (Scleropogon brevifolius Phil.). Dominant shrub species 
included honey mesquite, four-wing saltbush (Atriplex canescens (Pursh) Nutt.), soap-tree yucca (Yucca elata 
Engleman.), mormon tea (Ephedra torreyana (Wats.), and broom snakeweed (Gutierrezia sarothrae (Pursh) Britt. & 
Rusby). While black grama and tobosa tend to occur in pure stands, dropseed and threeawn are often intermixed and 
not easily identified with remote sensing, even in high-resolution imagery. Mesquite occurs both as an encroaching 
shrub to grasslands and as a monoculture within mesquite coppice dune systems. In these latter areas, mesquite 
plants are quite large (approx. 6-8 m canopy diameter) and easily distinguished because the shrub interspace 
typically lacks vegetation except following pulses of effective rainfall. A stratified random field sample approach 
was used to determine percent cover and dominant vegetation for 322 field plots (2.5 x 3.5 m).  

 
Image Segmentation and Analysis 

The panchromatic (0.61 cm) and multispectral (2.4 m) bands of a QuickBird image acquired on Nov. 4, 2004 
were pansharpened using the principle components method in Erdas Imagine 8.7. The pansharpened image allowed 
us to detect single mesquite shrubs and differentiate broader vegetation classes. Derived image products from the 
multispectral bands included a principle components analysis (PCA) image and a soil adjusted vegetation index 
(SAVI) image (Huete, 1988). Other data layers included a soil map, a digital elevation model (DEM), and aspect 
and slope layers.   

Imagery was analyzed with eCognition, an object-based image analysis program (Definiens, 2003). In this 
approach, an image is segmented based on 3 parameters: scale, color (spectral information), and shape. Color and 
shape can be weighted from 0 to 1. Within the shape setting, smoothness or compactness can be defined and also 
weighted from 0 to 1. The scale parameter is unit-less and controls the size of image objects, with a larger scale 
parameter resulting in larger image objects. The image was segmented at three different levels: level 1 at scale 10 
(fine scale for detecting single shrubs), level 2 at scale 100 (coarser scale for broader vegetation patches), and level 3 
at scale 200 (scale for extracting broadest vegetation patches). Color/shape and smoothness/compactness were set at 
0.8/0.2 and 0.8/0.2 respectively for level 1 and at 0.9/0.1 and 0.5/0.5 for levels 2 and 3.  

Shrubs were classified at level 1 using the methods described in Laliberte et al. (2004), then masked out and 
the image was segmented again at level 2. If shrubs were included in the segmentation, their low spectral values 
would reduce the overall mean spectral value for an object. By masking the shrubs, we were able to obtain image 
object attributes that described only shrub interspace vegetation, because our main objective was to map grass cover.  
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For each image object that contained a field plot, we extracted the following spectral, spatial, texture and 
contextual features from eCognition, resulting in a total of 118 input variables for the decision tree:  

• Mean, ratio, and standard deviation of each band (near infrared, red, green, blue, PCA, SAVI) 
• Relationship to neighboring, super- or sub-object (objects on other levels)   
• Texture measures (Gray-level co-occurrence matrix) 
• Aspect, slope, soil layers, and an elevation model  

 
Decision Tree Analysis 

For the decision tree analysis, we used CART® by Salford Systems (Steinberg and Colla, 1997), a program that 
uses the classification and regression tree algorithm originally develop by Breiman et al., 1984). Half of the field 
plots were used to grow the regression tree, half were reserved to perform independent accuracy assessments of the 
resulting predictive maps. A maximal tree was grown, and then pruned back to obtain the optimal tree by 
determining the lowest misclassification error, which was achieved with 10-fold cross validation. In decision trees, 
an optimal tree has the lowest cross validated relative error, which is the error rate of the tree relative to the root 
node. In our decision tree, the response variable was percent vegetation cover, and the explanatory variables 
included the 118 variables extracted from eCognition. The rule base obtained from CART® was applied in 
eCognition to create predictive maps of percent vegetation cover.    
 
Accuracy Assessment 

We performed two types of accuracy assessments of the predictive maps: a conventional accuracy assessment 
using discrete class boundaries, and an accuracy assessment using fuzzy class boundaries. Class boundaries were 
determined from the regression tree based on the midpoints between the node mean values, while in the fuzzy 
accuracy assessment, we allowed for a 2.5% or a 5% vegetation cover buffer around the class boundary. Using fuzzy 
class boundaries was considered to be more appropriate in this case, because the regression tree outputs mean 
percent cover values for the nodes, and for a continuous variable such as percent cover it is difficult to determine 
exact cutoff values for discrete classes. Although our accuracy assessment with fuzzy boundaries is not a fuzzy 
accuracy assessment in the strict sense as described by Gopal and Woodcock (1994) as applied to landcover/landuse 
classes, it is nevertheless a variation of fuzzy set theory that describes imprecision or vagueness in complex 
environments (Zadeh, 1973).  
 
 

RESULTS 
 
Multiresolution Image Segmentation 
 The results of the image segmentation on level 1 (fine scale) with the resulting shrub classification, and 
subsequent segmentation on level 2 (coarse scale) are depicted in Figure 1. The approach of classifying shrubs, 
masking shrubs, and segmenting the image again has the advantage that the spectral values of image objects are not 
affected by the relative low spectral values of shrubs. This allowed us to obtain a better relationship between percent 
cover measured in the field and the estimate obtained from the image. The classified shrub layer was combined with 
the level 2 classification in a classification-based segmentation, a procedure in eCognition that allows for merging of 
classification results from different levels.  
 
Decision Tree and Map Output 

The optimal tree provided by CART® had 10 nodes, but we decided to develop classification maps of percent 
cover using 4, 5, and 6 nodes for two reasons: 1) we felt that using 10 classes for percent cover was excessive in arid 
land vegetation, and 2) the cross validated relative error of the tree increased only slightly from 0.381 (10 nodes) to 
0.391 (4 nodes) (Figure 2). The decision tree in Figure 3 depicts the rule base used for creating the predictive 
vegetation cover maps. Shown is the regression tree with 6 end nodes. Pruning node 5 resulted in the 5-node tree 
and further pruning of node 2 resulted in the 4-node tree. Out of 118 input variables, 5 were chosen for this tree. The 
mean of the NIR band was the first split in the tree and was selected twice. The 3 other variables included the mean 
difference to the neighboring object of the SAVI band, the standard deviation of the SAVI band, and the standard 
deviation difference to the super object of the blue band.    

The maps created from the regression trees with 4, 5, and 6 nodes are shown in Figure 4. The class means were 
determined by the regression tree and the class boundaries were established based on the midpoints between the 
node mean values.  
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Figure 1. A subset of the pansharpened QuickBird image (a), the level 1 segmentation for detection of shrubs (b), 
the classified shrubs image (c), and the level 2 segmentation of the image with masked-out shrubs (d). Spectral, 
spatial and contextual object features for input to the regression tree were extracted from the level 2 segmentation.  
 

                                  

0

0.1

0.2

0.3

0.4

0.5

0.6

10 9 8 7 6 5 4 3 2

# of terminal nodes in regression tree

cr
os

s 
va

lid
at

ed
 re

la
tiv

e 
er

ro
r

 
Figure 2. Cross validated relative error for regression trees with 2-10 nodes. The optimal tree chosen by the 
CART® program had 10 nodes; classified maps were developed from trees with 4, 5, and 6 nodes. 
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Figure 3. Regression tree with 6 end nodes. The hexagonal boxes show the variable and its threshold value used in 
the split. Terminal nodes are shown in bold, and values at terminal nodes are the mean percent cover for that node. 
Node 5 (in black) was pruned for the 5-node tree, and node 2 (in blue) was pruned for the 4-node tree (in red).  
 
 

 
 
Figure 4. Classification of percent cover based on regression trees with 4 (a), 5 (b), and 6 (c) end nodes. Shrubs (in 
black) were derived from a separate classification at the finest segmentation level and overlaid on the maps.  
 
Accuracy Assessment 

Overall classification accuracy and Kappa Index of Agreement decreased with increasing class size and 
increased as the buffer size around the classes increased (Figure 5). Producer’s and user’s accuracy for the maps 
with 4, 5, and 6 classes are shown in Table 1. With the exception of class number 3 in the 5- and 6-class maps, all 
classes showed an improvement in producer’s and user’s accuracy by adding the 2.5% cover buffer and then 
increasing it to a 5% buffer. Class number 3 has the highest percent vegetation cover (>67.6%), and is composed 
exclusively of tobosa grass and high cover black grama grass. Both vegetation types have a unique signature and are 
easily detected. For that reason, no improvement in accuracy was seen by adding the buffers. In fact, except for the 
producer’s accuracy for the discrete boundary analysis, all producer’s and user’s accuracies for class number 3 were 
lower in the 5- and 6-class map compared to the 4-class map.   

 

20  Biennial Workshop on Aerial Photography, Videography, and  
High Resolution Digital Imagery for Resource Assessment 

October 4-6, 2005 * Weslaco, Texas 

th



      
 

60

70

80

90

4 5 6
number of classes

A
cc

ur
ac

y 
(%

)

discrete 2.5% fuzzy 5% fuzzy

0.4

0.5

0.6

0.7

0.8

0.9

4 5 6
number of classes

K
ap

pa
 In

de
x 

of
 A

gr
ee

m
en

t

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Overall classification accuracies and Kappa Index of Agreement for percent cover maps shown in Figure 
    3 with 4, 5, and 6 classes using discrete or fuzzy accuracy assessments. For the fuzzy accuracy   
    assessment, a 2.5% or 5% cover buffer was placed around the class boundaries.  
 
 
Table 1. Producers and user’s accuracy (in %) for maps with 4, 5 and 6 classes based on discrete class boundaries, a 
2.5% and a 5% cover buffer around class boundaries. Class numbers correspond to node numbers in regression tree 
in Figure 3 
 

Class number: 4-class map 
        % cover values 

6 
0-14.8 

4 
14.9-31.4 

1 
31.5-63.6 

3 
>63.6 

Producer’s accuracy discrete 76 72 67  73 
User’s accuracy discrete 80 63 76  89 
Producer’s accuracy 2.5% fuzzy 84 81 75  90 
User’s accuracy 2.5% fuzzy 85 75 86 100 
Producer’s accuracy 5% fuzzy 86 88 83  90 
User’s accuracy 5% fuzzy 93 79 86 100 

 
Class number: 5-class map 
        % cover values 

6 
0-14.8 

4 
14.9-28.3 

2 
28.4-43 

1 
43.1-67.6 

3 
>67.6 

Producer’s accuracy discrete 76 73 32 64 89 
User’s accuracy discrete 80 55 57 73 89 
Producer’s accuracy 2.5% fuzzy 84 82 43 67 89 
User’s accuracy 2.5% fuzzy 85 70 61 82 89 
Producer’s accuracy 5% fuzzy 86 91 56 72 89 
User’s accuracy 5% fuzzy 93 75 68 95 89 

 
Class number: 6-class map 
        % cover values 

6 
0-13.1 

4 
13.2-21.7 

5 
21.8-31 

2 
31.1-43 

1 
43.1-67.6 

3 
>67.6 

Producer’s accuracy discrete 81 55 47 39 64 89 
User’s accuracy discrete 77 54 44 50 73 89 
Producer’s accuracy 2.5% fuzzy 83 65 64 48 67 89 
User’s accuracy 2.5% fuzzy 80 66 54 57 82 89 
Producer’s accuracy 5% fuzzy 91 80 76 60 72 89 
User’s accuracy 5% fuzzy 87 83 67 64 95 89 

 
 
 
 

20  Biennial Workshop on Aerial Photography, Videography, and  
High Resolution Digital Imagery for Resource Assessment 

October 4-6, 2005 * Weslaco, Texas 

th



 
DISCUSSION AND CONCLUSIONS 

 
 In our part of the Chihuahuan Desert, it is difficult to map vegetation with high resolution satellite or aerial 
imagery, because shrubs dominate many areas and are present in most vegetation communities, which complicates 
identifying non-shrub vegetation. The object-based multi-scale classification approach solved some of those 
problems and helped to detect and map vegetation at different scales. Shrubs were classified at a fine scale and shrub 
interspace vegetation at a coarser scale, and the decision tree rule base was applied only at the coarser scale.  

The regression tree approach proved to be an excellent tool for reducing the numerous input variables created in 
eCognition and for identifying relationships between input variables and percent vegetation cover. Correlation 
between variables was not a problem, because decision trees are non-parametric. Applying the rules from the 
regression tree in eCognition was very straightforward, because the interface allows for creating, combining and 
modifying rule-based information.   
 The more frequent and earlier in a decision tree a variable is used, the greater explanatory power it has 
(Lagacherie and Holmes, 1997). The mean of the near infrared band represented the first and second split in the tree. 
Two other variables incorporated information about neighboring objects on the same level (mean difference to the 
neighboring object in the SAVI band) and on a coarser level (the standard deviation difference to the super object in 
the blue band). The near infrared band and the SAVI band were selected twice. The occurrence of spectral and 
contextual variables in the regression tree and the use of more than 1 segmentation level illustrate the usefulness of 
object-based multi-scale analysis for mapping percent cover. Similar findings were encountered mapping vegetation 
classes in the same pasture with object-based analysis and classification trees (Laliberte et al., in review). In that 
study, the near infrared band appeared in 3 segmentation levels as the first variable in the classification tree, the 
SAVI was the most frequently selected band, and the blue band was selected more frequently than the red or green 
band, with most of the blue band selections (5 of 9) as relationships to neighbor and super objects.  
 A fuzzy accuracy assessment was considered to be more appropriate than a conventional accuracy assessment 
under our conditions. First, although the regression tree yielded distinctive classes from a continuous variable and 
the means of those classes were known, discrete class boundaries are not easily defined. Second, even if discrete 
class boundaries were known, a predictive map for percent cover is better assessed by using fuzzy class boundaries, 
because of the uncertainty associated with estimating percent cover in the field. Third, we used an object-based 
analysis and related a field plot to a larger image object, which implies that there is some type of variability in 
percent cover within each object.  
 Our accuracy results compare favorably with similar studies. Lawrence et al. (2004) reported an overall 
classification accuracy of 84% for a comparable decision tree approach using IKONOS data. In that study, 4 classes 
were used: tree, water, meadow, rock. Shupe and Marsh (2004) used various combinations of Landsat TM, elevation 
and radar data and determined that the highest overall accuracy for relative cover in southwest Arizona was 88%  

In terms of accuracy, our 4-class map would be most reliable for further analysis and use in management 
purposes. Splitting out a percent cover classification into more than 4-5 classes reduces not only the accuracy, but 
may not be ecologically meaningful, which was the reason that we chose to use fewer classes than the 10 classes 
suggested by the Cart® program for the optimal tree. We conclude that a 4-or 5-class map would be appropriate for 
our use, which will include determination of livestock movement and activities in the pasture.  

This approach proved to be an effective method for mapping arid land vegetation cover from high-resolution 
satellite imagery at the pasture-level scale. The selection of variables in this study and the classification tree study 
(Laliberte et al., in review) can potentially guide future object-based classifications using nearest neighbor analysis 
and field sampling. Future research will focus on applying this approach over larger areas and incorporating satellite 
imagery and aerial photography of varying resolutions.  
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