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Errors associated with the spatial extrapolation of

information are an important issue in ecology. Although

improvements in instrumentation and software have

increased our ability to represent complex behaviors, a

measurable reduction in prediction errors is not always

achieved with increased complexity. This difficulty in

generating accurate predictions is due, in part, to trade-

offs in error propagation that exist between simple and

complex approaches: simple models often exclude key

processes resulting in unknown prediction biases while

complex approaches reduce prediction bias at the

expense of increased estimation and measurement error.

Our inability to anticipate and measure these trade-offs

impedes our ability to define and control prediction

errors.

We develop a framework to evaluate and compare

three classes of approaches to the problem of spatial

extrapolation. Trade-offs in realism and potential errors

for these classes are illustrated using a case study of the

northern spotted owl. A variety of spatial problems are

then considered and alternatives to dealing with spatial

information are explored. Comparisons of model alter-

natives show that compelling reasons must exist before

complex, spatially explicit models are required for

prediction. Given the complexity of these issues, our

framework assists ecologists in clarifying these problems

and in selecting the most appropriate approach for a

given objective.

Ecologists are increasingly faced with the need to use

short-term, local measurements to assess patterns of

change at landscape, regional and even global scales

(Wessman 1992, Dale et al. 2001). Because broad-scale

assessments rely on data obtained at much finer scales,

statistical or simulation methods are often used to

extrapolate data in space (i.e. ‘‘scaling’’; here we use

the term ‘‘scaling’’ in a restricted sense to refer to the use

of measurements made at one spatial scale to provide

information at a different, and typically broader, scale)

and time (i.e. ‘‘forecasting’’). Extrapolation of informa-

tion across scales is fraught with difficulties (Levin 1992,

Clark et al. 2001), many of which directly affect the

precision and accuracy of results (Heuvelink 1998).

These difficulties are further exacerbated when spatial

interactions produce large responses that overwhelm

local effects. For example, fine-grained patterns of plant

community development depend on competitive inter-

actions among plants (Tilman 1994), but local compe-

titive effects are less important when contagious

processes such as fire determine vegetation patterns

(Miller and Urban 1999). Under these conditions,

accurate predictions depend upon our ability to identify

the relevant spatial processes and to determine their

effects on system dynamics. Although others have

classified predictive methods based on the degree of

spatial information included (Baker 1989), or provided

quantitative methods to extrapolate information across

scales (King 1991), guidelines to determine when the

inclusion of spatial information increases the accuracy of

ecological predictions have yet to be developed.

Our goal is to provide a framework for extrapolation

relevant to a broad range of ecologists from different

disciplines, with different perspectives, and with different

levels of mathematical expertise or familiarity with

quantitative methods. Models of extrapolation range

from simple to complex; our approach provides guidance

in the selection of the appropriate model and the likely

consequences of that selection to errors in prediction.

Although scaling (spatial) and forecasting (temporal)

predictions can be distinguished, the conceptual and

issues of both are similar. Thus, we focus on spatial

extrapolation and recognize the relevance to temporal

applications (terms and definitions provided in Table 1).
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with a relatively short list of references. A summary is not required.
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The importance of spatial information to the accuracy

of predictions affects a diversity of ecological problems,

including climate change (Eastman et al. 2001), wildlife

conservation (Hansen et al. 1993), biodiversity (Dale et

al. 1994), species invasions (Pitelka et al. 1997), meta-

population dynamics (Bascompte and Sole 1996), spread

of disturbance such as fire (Heyerdahl et al. 2001), soil

erosion (Pimentel and Skidmore 1999), and carbon

sequestration (Solomon et al. 1993, Bachelet et al.

2001). Spatial information is not always required,

particularly when spatial effects are inconsequential or

the scales for prediction are sufficiently large. However,

the relative value of including spatial effects is rarely

addressed, in part because there is no clearly defined set

of guidelines for this evaluation.

The need to include spatial information is only

justified when the errors associated with predictions are

substantially reduced. The literature on prediction errors

is extensive (O’Neill 1973, Gardner et al. 1981, Parysow

et al. 2000), and will not be reviewed here. However, two

‘‘error’’ issues are noteworthy: (1) large quantities of

detailed information at local scales do not ensure

accurate predictions at broad spatial scales; (2) compar-

isons of prediction errors for alternative model formula-

tions (Gardner et al. 1982, Reynolds and Acock 1985)

show that simple approaches may be sufficient when

processes are linear and parameters are uncertain

(Deutschman et al. 1999).

We present a framework to determine when the

inclusion of spatial information increases the accuracy

of ecological predictions. This framework includes a

simple classification system based on the degree of

spatial interactions. Sources of error due to ‘‘problem

misclassification’’ are identified followed by an example

of trade-offs in model selection using a case study of the

northern spotted owl. Finally, a discussion of the

characteristics of ecological systems that require spatial

approaches is provided along with a statistical evalua-

tion of errors.

Classes of models

A framework for relating data or information on one

variable from one scale to another scale can be devel-

oped from the general expression for a regionalized

variable used in geostatistics. If a variable z at location i

includes a combination of a broad-scale forcing (trend)

component plus a local spatial component, then:

zi�f(xi)�si�o (1)

where the vector x is a set of explanatory variables at

location i, s is a function of values measured in the

neighborhood of location i, and o is an appropriate error

term. Equation 1 provides the basis for a classification of

three classes of approaches: class 1 is a non-spatial

approach that makes no explicit reference to location,

and simplifies to z�/f(x)�/o; class 2 is a spatially implicit

approach that references location, xi, but not the

neighborhood, si, thus estimating z is equal to f(xi)�/o;
and class 3 is a spatially explicit approach that corre-

sponds to the full geostatistical model, and includes an

explicit reference to the neighborhood of the location of

interest (Eq. 1). We next describe these three approaches

in detail.

Class 1. Non-spatial models

The simplest prediction uses a model where the inde-

pendent variables, x are measured without regard to

spatial location:

z�f(x)�o (2)

Although the spatial distribution of the x’s may be non-

random, this distribution is unknown, insignificant or

prohibitively expensive to measure. As an example, one

may wish to predict an ecological property, such as

biomass, as a function of a set (x) of explanatory

variables associated with a plant community type.

Table 1. Definitions of terms.

Predict1: to declare or indicate in advance, to foretell on the basis of observation,
experience or scientific reason

Extrapolate (interpolate): to extend the spatial extent or refine the resolution of measured data to arrive
at a broader scale or finer grained estimate

Synoptic estimators: any estimator that provides a prediction of the state of the system simultaneously
over a broad area, either as steady-state (average) conditions or at a specified
point in time

Scenario: definition of the boundary conditions for a model extrapolation or prediction
Project: a conjecture about the future based on observations, measurements or experience,

subject to a specified model or scenario. Estimates are not necessarily associated
with explicit incorporation of errors or uncertainties

Forecast: an explicit projection, including error estimates, of an event or condition at a specified
future time, based on a specific model, scenario, and initial conditions

Sampled area: the location and scale (both spatial and temporal) of measurements which will
serve as the basis of predictions

Target area: the area (defined spatially and temporally) to which predictions will be applied

1 ‘‘Predict’’ is used here as ‘‘to foretell in advance based on observation, experience or scientific reason.’’ This definition is more
general than often used in earth sciences (Pielke 2002) and ecology (Clark et al. 2001). We believe that a general definition is
preferred when common usage makes a stricter definition unnecessary and confusing.
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Independent samples provide point estimates for each

community type, and prediction is effected by assigning

a single value of z to each community. Thus, the z’s vary

from location to location as a function of changes in the

explanatory variables, but identical values of z will

always be predicted for the same set of variables.

A familiar non-spatial example is the prediction of net

primary production by community type based on plot-

scale estimates that are averaged and weighted by the

area to extrapolate to each community (Lieth and

Whittaker 1975). Modeling approaches based on

‘‘look-up tables’’ are similarly non-spatial. For example,

one can simulate effects of temperature, precipitation,

and soil type on vegetation growth, and save predictions

in a ‘‘look-up table’’. One applies this look-up table by

matching the descriptors for each study plot with the

corresponding tabulated values.

If maps of variables describing each location are

available, then maps of predicted values can be generated

from look-up tables. These apparently spatial predictions

are, in reality, non-spatial models because the neighbor-

hood variables, si, are unknown or unused. In statistical

terms, spatial trends within the landscape are small,

autocorrelations among explanatory variables cannot be

detected (or are ignored), landscape context or neigh-

borhood effects are unimportant, and the absence of

these relationships is assumed to have marginal effects

on the error term.

Class 2. Spatially implicit models

The spatially implicit approach is distinguished from

non-spatial predictions by the inclusion of significant

spatial relationships among explanatory variable(s):

zi�f(xi)�o (3)

Because the physical environment is spatially structured

and ecological processes are often correlated with spatial

variation in environmental factors, significant spatial

structure in explanatory variables is the rule rather than

the exception, thus justifying this approach for many

objectives (Legendre et al. 1989, Borcard et al. 1992).

The use of correlated and spatially structured driving

variables generates spatially-structured output, even if

the model does not reference location. Consider the

previous example of a model driven by a vector of input

variables. If the input vectors are sampled at particular

locations �/ such as with geospatial data �/ then the

model output will have spatial structure corresponding

to the input. Simulations of net primary production,

nitrogen mineralization, and decomposition rates in the

Central Great Plains using statistical models or biogeo-

chemical simulation models illustrate this approach

(Burke et al. 1991, 1997). Most gap models that simulate

grassland or forest successional dynamics (Shugart 1984,

Botkin 1993, Peters 2002) and most biogeographic

models for regional to global scales (Melillo et al.

1995, Neilson and Running 1996) provide further

examples.

The spatially implicit case is essentially a non-spatial

model driven by spatially structured data. This spans a

spectrum of cases. At its simplest, this approach has very

few driving variables and little structure that is not

appreciably different from a non-spatial model. As the

number of variables increases and the degree of auto-

correlation among variables increases, the likelihood that

spatial structure will be generated also increases. This

trend can be amplified by including driving variables

that reference spatial context, such as distance to stream

or upslope contributing area. Although these variables

are calculated at a point, after they are computed they

are spatially implicit because location is not tracked

explicitly. In the limit, of course, if one measured enough

spatially structured variables then every point would be

unique and this approach would be essentially spatially

explicit.

The spatially implicit approach does not include

spatial processes, nor does it explicitly reference the

neighborhood or landscape context of the study plot.

Yet these models, when evaluated over an empirical joint

distribution of input variables, result in output maps that

are spatially structured.

Class 3. Spatially explicit models

A spatially explicit approach is distinguished by the

inclusion of neighborhood effects (si) for the estimation

of z that results in Eq. 1. Neighborhood effects are

important when three conditions exist: (a) transfers

among sites of materials, organisms, energy, etc. are

large; (b) rates of transfer are determined by local

conditions; and (c) variables governing the local-scale

transfers are spatially heterogeneous. A variety of

statistical, empirical or physical-based approaches may

be used to estimate Si by accounting for effects of

spatially related cells. ‘‘Structure functions’’ such as

variograms used in geostatistics (kriging) explicitly

address local spatial structure (Rossi et al. 1992).

Similarly, in spatial regressions (e.g. conditional or

simultaneous autoregression), a term is fit to account

for the effect at location i of variables measured at

neighboring locations (Keitt et al. 2002).

Familiar examples of spatially explicit models include

cellular automata (Hogeweg 1988), models that compute

seed dispersal likelihood based on the locations of target

sites relative to source sites (Coffin and Lauenroth 1994,

Clark et al. 1998), and models of contagious distur-

bances such as fire and disease that simulate interacting

cells (Turner et al. 1989). Likewise, hydrology models

with 3-dimensional structure that simulate lateral fluxes
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(e.g. RHESSYS, Band et al. 2001) are spatially explicit,

whereas hydrology models driven by topographic indices

(e.g. TOPMODEL, Beven and Kirkby 1979) are spa-

tially implicit. Spatially explicit coupled atmospheric-

ecological process models include Eastman et al. (2001)

and Lu et al. (2001) where atmospheric winds and

turbulence provide horizontal transfers of material

among locations.

The decision to simulate space explicitly has serious

implications for sampling and model-fitting. Explicit

inclusion of local effects in Si requires a much larger set

of data for model calibration and testing than for the

other two approaches. Data needed to estimate such

models cannot be collected using independent (i.e. not

autocorrelated) samples; it is the lack of such indepen-

dence that makes these models interesting.

Sources of error and consequences of class selection

The distinction between the three approaches is deter-

mined by two factors: (1) the presence or absence of

spatial dependencies in the explanatory variables (absent

in non-spatial models, present in spatially implicit and

explicit models); and (2) the presence or absence of a

neighborhood function (present only in spatially explicit

models). Distinctions between approaches are important

because the error structure associated with predictions

differs by approach. Simple models are often optimal

when information is imprecise (O’Neill 1979, Reynolds

and Acock 1985). However, more complicated models

may be better when dynamics are complex and extensive

data are available; yet these data may be expensive to

collect and contain a number of small errors that

accumulate to produce disproportionately large uncer-

tainties in predictions (Gardner et al. 1980). The relative

trade-offs between omitting key parameters (‘‘errors of

omission’’ in simple models) and errors associated

with including many parameters of unknown impor-

tance (‘‘errors of commission’’ in complex models)

(Fig. 1) are best determined by explicit consideration

of the sources of error in each approach.

Four sources of error are most relevant to uncertainty

in predictions from spatial models (Table 2): Measure-

ment error is an attribute of the data, and may be due to

imprecision in measurements, or because the phenom-

enon of interest cannot be directly measured. For

example, there may be uncertainties in estimates of soil

nutrients due to uncontrolled sampling error or to

variability in lab results. Model error stems from

representation of a process of interest, including deciding

which drivers to include. All models are abstractions of

reality and subject to model error. These errors become

serious when non-linear processes are represented as

linear functions or the size of the neighborhood and

magnitude of local interactions are incorrectly specified.

Estimation error is associated with parameters selected

to calibrate the model, and is often indexed by the

standard errors of regression coefficients. It is often

difficult to isolate estimation error from model error

because the choice of a particular model also dictates the

number and kinds of parameters. Finally, process error is

the natural variation of processes that are simulated as

stochastic functions (e.g. weather, disturbances, mortal-

ity, etc.). All four sources lead to increased uncertainty in

predictions due to both reduced accuracy (biased pre-

dictions) and reduced precision (more variable predic-

tions).

Trade-offs in model selection: a case study using the

northern spotted owl

We examine trade-offs in realism and potential errors for

the three approaches using a well-documented case study

of the northern spotted owl (Strix occidentalis ). At issue

Fig. 1. Prediction errors of omission associated with excluding
processes decrease as model complexity increases whereas errors
associated with including processes (errors of commission)
increase.

Table 2. Sources of error in spatial or temporal predictions or
extrapolations.

Source Definition

Measurement error Variation associated with imperfect
measurements at discrete points in
space or time of processes or states
that vary continuously over these scales

Model error Uncertainty, inadequacy, or bias
resulting from the choice of particular
forms (equations) or components
(variables, covariates) as a representation
of the real system

Estimation error Uncertainty or error resulting from
statistical confidence in estimating the
values of coefficients and parameters
implemented as a model

Process error Variability inherent to the system,
especially expressed as ‘natural’
variation in variables or parameters
of an implemented model
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was the tension between logging interests and demands

to preserve old-growth forests as potential owl habitat

(Thomas et al. 1990; FEMAT 1993, Marcot and

Thomas 1997). Because of the huge spatial scale of the

analysis (the Pacific northwestern US) and the long-term

perspective required by the pace of forest dynamics and

owl longevity, models played a crucial role in the

assessment. McKelvey et al. (1993) provide an insightful

discussion of the modeling process and document the

sequence of increasingly complicated models used.

The simplest model was a non-spatial age projection

model or Leslie matrix with three age classes. The model

simulated population growth (birth and death), and

required four parameters (three age-specific survivorship

rates and a single fecundity rate). The model inferred the

finite rate of population increase (l). Because of the

large amount of data used to estimate the demographic

rates, it was possible to conclude with a level of certainty

greater than measurement error that the population was

decreasing. However, this approach ignored effects of

owl dispersal on population dynamics.

The second approach invoked spatially implicit meta-

population models to assess the effects of dispersal and

extinction on landscape-level abundance of the spotted

owl. Two metapopulation models were used that esti-

mated dispersal success as a function of patch density

and geometry �/ actual patch locations (and distance

among patches) were not considered. The models used

the same demographic parameters to describe fecundity

and mortality as in the Leslie matrix, and added

dispersal parameters. This model suggested that groups

of habitat patches would support conservation efforts

more effectively than isolated patches. However, this

model did not provide insight into the effects of patch

size, shape, or orientation on owl dynamics.

The third model was an individual-based simulator

with a spatially explicit description of habitat patches.

The model simulated habitat selection, breeding, and

dispersal of individual male and female owls on a raster-

based map of habitat types. This model used the same

demographic parameters as the previous models, but

added a dispersal process as a correlated random walk.

A number of parameters were required to describe the

spatial behavior of owls, such as their tendency to move

in the same or different directions and their attraction to

or avoidance of different habitats. In addition, the

demographic parameters varied with habitat type.

Thus, for the simplest case of a binary map (‘‘habitat’’

vs ‘‘not habitat’’), the model required 18 parameters; if

three habitat types were simulated the total was doubled,

and so on. This model provided insights into the effects

of habitat amount and spatial complexity on owl

dynamics as well as a tool to explore scenarios about

owl dispersal behavior and source/sink dynamics.

From the perspective of model trade-offs (Fig. 1), the

models perform as expected in terms of potential ‘‘errors

of commission’’ (Fig. 2). The number of parameters

increases dramatically with the spatially explicit model,

and would be more dramatic if additional habitat types

had been considered. Only four parameters in the

spatially explicit model were estimated from data �/ the

same four used in the Leslie matrix. The remainder of

the parameters were estimated from expert opinion.

Thus, the use of a spatially explicit model increased

parametric complexity while simultaneously decreasing

the proportion of parameters estimated from data. The

‘‘errors of omission’’ curve is difficult to estimate

because all models omit information. We offer the

‘‘omissions curve’’ as a heuristic device to compare

models. The curve decreases in number of processes

omitted as model complexity increases (Fig. 2).

In terms of model uncertainty, McKelvey et al. (1993)

illustrate the trade-offs involved in evaluating models.

With the Leslie matrix, the solution is deterministic with

an exact solution that depends only on model para-

meters. The advantage of this approach is that effects of

parameter error can be evaluated analytically. In the

spatially implicit models, the solution is also determi-

nistic, but numerical solutions are required. With the

individual-based simulator, the stochastic nature of

demographics and dispersal required that model beha-

vior be assessed from a set of replicate simulations. This

approach provided a minimal expression of uncertainty

associated with process error, and also provided the

confidence limits typical of stochastic simulations.

Although McKelvey et al. (1993) did not examine all

sources of potential uncertainty (i.e. effects of measure-

ment, model, and estimation error associated with

dispersal), they went much further than most modeling

Fig. 2. The number of parameters included or omitted for each
of three models of increasing complexity used in the spotted owl
example. The total number of parameters increases and the
proportion of parameters omitted from the analysis decreases as
model complexity increases.
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studies to examine effects of model sensitivity and

uncertainty on management recommendations. It is

important to emphasize that none of the spotted owl

models is correct (all models are simplifications of

reality), nor is there an obvious best model (model

selection depends on the objectives). This case study

illustrates the trade-offs between inferential richness due

to the spatial complexity of dispersal and landscape

context, and the cost of modeling this richness explicitly.

Issues causing complexity in models: consequences

and solutions

Addressing trade-offs between errors of omission and

errors of commission, as highlighted in the case study, is

the essential challenge when making spatial extrapola-

tions. The adequacy of the extrapolation requires knowl-

edge when a simple model is sufficient or when a more

complex, spatial model is required. Four types of

ecological situations are likely to require the complexity

of either spatially implicit or explicit approaches: (1) non-

linear processes; (2) threshold responses; (3) positive

feedbacks; and (4) contagious processes that induce

spatial fluxes of organisms, material or energy (Table 3).

In each situation, it is the interactions with spatial

structure that motivate the use of spatial models. These

situations can, of course, occur simultaneously. For

example, a pest outbreak driven by a contagious process

(dispersal) can be reinforced initially by a positive-feed-

back mechanism (population growth) that leads to a

threshold response (the eruption; Grassberger 1983,

Cruickshank et al. 1999). Similarly, metapopulation

models often show threshold responses to incremental

losses in habitat; near this threshold, connectivity be-

comes increasingly important with dispersal providing a

positive feedback that couples the fates of populations in

adjacent habitat patches (Bevers and Flather 1999).

Non-linear processes

A linear process has the property that the expected value

of a function, f(x), is equivalent to the function evaluated

when the independent values are set to their expected

value, x. Non-linear systems do not have this property,

thus requiring that the function be integrated across the

distributions of x’s. Although non-linearities are impor-

tant in spatial systems, they are often ignored when

making spatial extrapolations. For instance, a typical

approach is to use area-weighted estimates of spatially

distributed properties (Burke et al. 1991, 1997). Conse-

quently, soil maps can be inadequate to predict phos-

phorous runoff into streams because the scale of the

maps is too coarse (Rosenblatt et al. 2000).

Threshold responses

A special case of non-linearity occurs when the function

changes qualitatively at a critical value of the explana-

tory variable(s). These threshold responses include pest

eruptions (Ludwig et al. 1978), watershed impacts of

land cover change (Davenport et al. 1998), conversion of

grasslands to shrublands (Archer 1989), and lake

eutrophication (Hakanson 1999). Spatial patterns that

alter connectivity are notorious causes of thresholds

(Gardner et al. 1987, Levin and Durrett 1996, With et al.

1997). Attempts to model these thresholds result in

highly sensitive responses because the exact location of

the thresholds are difficult to specify or, once experi-

enced, to generalize to other landscapes.

Table 3. Classification of ecological scenarios that invite model complexity, and the possible responses to this complexity. See text
for explanation and examples.

Issue1 Implication Alternative responses

1. process f(x) is non-linear E[f(x)]"/f(E[x]) Integrate f(x) over the empirical
distribution of x (its pdf)

2. f(x) has a threshold effect at x* forecasts are sensitive
(if modeled) or incorrect
(if not modeled); spatial
extrapolations uncertain near
threshold

(a) ignore if x is not near x*
(b) parameterize piecewise above and below x*
(c) simulate the effect explicitly

3. f(x) has strong positive feedbacks predictions are incorrect for
some parameter combinations
(regardless of location);
forecasts get worse over time

(errors amplify)

(a) ignore if weak
(b) parameterize implicitly
(c) simulate the feedback explicitly

4. f(x) includes spatial fluxes, lateral
transfers, or contagious processes si

for location i

predictions are incorrect for
some locations; errors amplify
over time and space

(a) ignore if weak
(b) parameterize implicitly
(c) simulate the spatial process explicitly

1 The issues are framed in terms of the geostatistical equation zi�/f(xi)�/si�/o, where f(x) is a function of a set of variables x
measured location i and si is a spatial neighborhood function local to i.
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Positive feedbacks

Feedbacks in ecological systems may be either positive

or negative: negative feedbacks are stabilizing while

positive feedbacks are often destabilizing. An example

of a positive feedback involves nitrogen (N) status and

productivity: high-N sites can increase plant production

which generates more litter of higher quality; N miner-

alization then increases which leads to higher N status

that feeds back to plant production. Forest models

incorporating this feedback often give rise to complex

behaviors, such as successional divergence to alternative

stable states (Pastor and Post 1986). By contrast, models

that only incorporate forest response to available re-

sources result in an asymptotic approach to steady-state

biomass or leaf area (Bormann and Likens 1979).

Models that ignore positive feedbacks can be incorrect

for soil texture, temperature, and precipitation condi-

tions regardless of their spatial location. Simulation

results will be unreliable and become more biased over

time due to error amplification. This behavior suggests

that the reliability of synoptic predictions depends on

time: earlier predictions should be more accurate than

later ones that include long-term feedbacks.

Spatial interactions or contagious (neighborhood)

processes

Some ecological processes are inherently spatial, such as

lateral hydrologic fluxes (Beeson et al. 2001), propagule

dispersal (Coffin and Lauenroth 1994), and contagious

disturbances (Miller and Urban 2000). Ignoring such

processes can lead to model predictions that are

incorrect for some locations that are independent of

other parameters at that location. Results from models

that ignore important contagious processes are spatial

autocorrelation in model errors (residuals; Legendre

1993). These errors may propagate spatially over time:

an error at location i at time t can induce error at

neighboring locations in the next time step.

Potential solutions to addressing issues that invite

model complexity

There are three approaches to dealing with model

complexity: (1) ignore the complexity, (2) represent the

complexity in a simplified manner, and (3) explicitly

model the complexity. Ignoring complexity is appropri-

ate when there are small effects on model results. For

example, in many terrestrial ecosystems, the dominant

hydrological and biogeochemical fluxes are vertical; thus

lateral fluxes are often assumed to be unimportant, and

spatially implicit models are effective for short-term

predictions (Parton et al. 1987).

A second approach is to address complexity implicitly.

Positive feedbacks can be modeled implicitly for multi-

plicative interactions among dependent variables or

higher-order forms such as quadratics. Similarly, spatial

interactions can be captured implicitly. The approach of

indexing dispersal success in terms of patch size and

isolation is well established in ecology (Whitcomb et al.

1981 after MacArthur and Wilson 1967). The neighbor-

hood effect of predation and nest parasitism on birds in

forest edges can be parameterized implicitly in terms of

edge:area ratios or similar indices (Temple 1986).

The third approach is to deal with the complexity

explicitly, a necessity for addressing effects of many

disturbances (Romme et al. 1998) or any system

displaying attributes of self-organized criticality (Mad-

dox 1992). Forecasts developed from simple models will

be misleading when systems are near a threshold. For

some applications, especially mapped forecasts of com-

munity formation as a result of dispersal (Pacala and

Silander 1990), spatial interactions must be simulated

explicitly. An effective approach may be a combination

of the three listed above. For example, one can use a

complex model to determine the range of conditions

under which a threshold is operative. Given these

threshold values, one could reformulate two different

models: one for use above and the second for below the

threshold.

Evaluating the appropriateness of a given approach

A priori consideration of the four issues that invite

model complexity can aid in both model selection and

testing that begin with a spatially referenced data-set

independent of model development and parameteriza-

tion. Predictions from a non-spatial model can be

compared to these data, allowing residual errors to be

inspected. The adequacy of a given model can be

evaluated using prediction errors provided by formal

statistics (Draper and Smith 1966). These methods have

been used infrequently for evaluating the appropriate

level of ecological model complexity (Gardner and

Urban 2003).

Statistical approaches can be illustrated within a

regression framework. Residuals associated with model

predictions are evaluated as ei�/Yi�/Ŷi, where Yi is the

value observed at location i; Ŷi is the model prediction

and ei is the error (residual) associated with the predic-

tion. The total prediction error is the sum of these errors

squared, corrected for the degrees of freedom (mean

squared error, MSE). Because variance in the data is the

sum of squared deviations from the mean (CSS corrected

for sample size), predictability of the model (as in

regression) is measured as R2�/(CSS�/MSE)/CSS.

Model evaluation is most often concerned with increas-

ing R2 and reducing the magnitude of model residuals e.

A model can be deemed adequate if four criteria are

satisfied: (1) R2 is sufficiently large; (2) significant trends
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in residuals are absent; (3) prediction errors are spatially

independent (i.e. residuals are not autocorrelated); and

(4) residuals are normally distributed (mean�/0.0). The

first criterion (R2) has considerable latitude because

useful explanatory power depends on the application; if

the other conditions are met, even a model with low R2

can provide useful insights about trends in spatial

extrapolation or forecasting. The other three criteria

have implications for extrapolation (and forecasting);

violating these criteria propagates error and produces

unacceptable predictions. Model residuals with a sig-

nificant trend with respect to predictor variables, the

predicted variable itself, or spatial location violate

criterion 2. Similarly, residuals that are asymmetrically

distributed or have a nonzero mean (violation of

criterion 4) suggest an inadequate model fit and invite

model reformulation.

Spatially dependent errors are of special concern.

Spatial trends (criterion 2) appear as trends with respect

to broad-scale location variables, such as longitude or

latitude. These broad-scale spatial trends are distinct

from finer-scale errors that appear as autocorrelated

residuals (criterion 3). In terms of a geostatistical model,

locational trends are a part of the general forcing f(xi),

while fine-scale errors are associated with the neighbor-

hood function si (Urban et al. 2002). The conventional

way to fit the neighborhood function si is to first detrend

the data by removing broader-scale forcings. Broad-scale

trends in the residuals imply an unaccounted constraint

expressed spatially (e.g. a gradient) or an unaccounted

spatial process (e.g. advection by prevailing winds). Such

errors can be remedied by including the latent variable(s)

in a spatially implicit model. Fine-scale errors (i.e.

autocorrelated residuals) also suggest unaccounted con-

straints or processes; these errors can be parameterized

implicitly or accounted for explicitly with a neighbor-

hood function.

A regression framework can provide useful guidelines

to decide when a model ‘‘needs’’ to include spatially

explicit neighborhood functions. Consider the case

where the model includes a neighborhood function

expressed in terms of a location ‘‘1 step away’’ from

the location of interest: zi�/f(xi)�/g(z[i�1])�/o. The

regression may not detect the effects of neighbors (g)

for two reasons: (a) the data are adequate but the

neighborhood effect is weak; or (b) the neighborhood

effect is real, but the data are inadequate to estimate it.

In both cases, the fit is statistically non-significant.

The former case rejects a spatial model, in effect arguing

that there is no ‘‘error of omission’’ while the latter

case rejects the spatial model because of the ‘‘error

of commission’’ implied by the poor fit. In either

case, standard model-fitting and evaluation techniques

inform the decision of the sufficient level of model

complexity.

Prospectus

Ecologists have access to a variety of techniques for

reducing sources of error or uncertainty into model

projections, including bootstrapping methods (appro-

priate for measurement error) and Monte Carlo methods

for propagating estimation and process error. However, a

general framework for correcting four sources of error at

once is not available, although some approaches such as

hierarchical Bayesian Markov chain Monte Carlo meth-

ods appear promising (Wikle et al. 1998, Clark 2003).

Here we reinforce previously noted cautions in extra-

polating from fine to broad scales: use the simplest

possible model that an application will allow. In addi-

tion, we emphasize the importance of being forthright in

admitting the potential for error associated with each

extrapolation approach, and in particular the error

propagation that spatially explicit models present.
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