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Chapter 7

Cross-Site Comparisons of 
Ecological Responses to Long-
Term Nitrogen Fertilization

S.L. Collins, K.N. Suding, and C.M. Clark

Atmospheric pollution, as either wet or dry deposition, 
is changing through time for many ecosystems 
(chapters 6, 12). The long-term effects of these 
changes on ecosystem structure and function are not 
well understood, in particular for reactive nitrogen 
in the forms of nitrate (NO3) and ammonium (NH4). 
Reactive nitrogen is an essential nutrient that limits net 
primary production in most terrestrial and some aquatic 
ecosystems (Vitousek and Howarth 1991, Elser et al. 
2007). Atmospheric nitrogen deposition is considered 
one of the major drivers of diversity loss in ecosystems 
(Sala et al. 2000), though land-use change remains the 
most important factor.

Given that human activity has doubled available 
nitrogen (Vitousek et al. 1997) along with other key 
resources (such as phosphorus) and that net primary 
production is increasing globally (Nemani et al. 2003) 
with variable patterns in time and space at specific sites 
(chapters 5, 14), a more mechanistic understanding 
of the relationship between nitrogen availability, 
productivity, and species diversity is needed. 

The following key questions remain unanswered:

• How do increasing resources other than nitrogen 
 affect productivity and species diversity? 
• What are the mechanisms that can cause diversity to 
 decline as productivity increases? 
• Does an increase in productivity directly or indirectly 
 through other environmental variables (such as pH) 
 affect species diversity? 
• How do microbial communities and processes 
 respond as resource availability increases? 
• Can plant functional trait responses provide a 
 mechanistic understanding to the relationship 
 between productivity and diversity?

Long-term observational and experimental data are 
needed to address these important research questions. 
For example, a long-term nitrogen fertilization study 
at the Cedar Creek LTER site in Minnesota (CDR) 

provides an interesting example of both threshold 
changes in species abundance and loss of diversity with 
addition of resources. In this experiment, about 10 g/m 
of nitrogen has been added annually to an abandoned 
agricultural field since 1982. Species diversity declined 
rapidly in response to nitrogen fertilization, whereas 
diversity in control plots fluctuated from year to year 
in response to interannual changes in precipitation. 
Consequently, the abundance of a non-native annual 
C3 grass, Agropyron repens, increased relatively 
rapidly while the abundance of a long-lived clonal 
C4 bunchgrass, Schizachyrium scoarpium, decreased 
relative to controls (figure 7-1). Thus, chronic 
environmental change can cause rapid, nonlinear 
transitions in local distribution and abundance of plant 
species.

Figure 7-1. Annual rank-abundance curves for (a) control and 
(b) fertilized plots at the Cedar Creek Ecosystem Science site 
(CDR) for Field C from 1982 to 2003 show the relative ranking 
of a late successional, perennial C4 grass (Schizachyrium 
scoparium) (green filled circles), and an early successional, 
annual C3 grass (Agropyron repens) (red filled circles) (Collins 
et al. 2008). The curves show how the ranks of Schizachyrium 
and Agropyron remain relatively constant in control plots, but 
they rapidly reverse order in fertilized plots. Reprinted with 
permission from the Ecological Society of America.
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Extrapolating cause and effect relationships from one 
ecosystem to another is often challenging, whereas 
multisite analyses of similar fertilization experiments 
across systems can provide greater generality. In a 
multisite analysis of plant community responses to 
experimental addition of nitrogen (100 kg/ha in most 
cases), plant species richness declined by about 30 
percent and aboveground net primary production 
(ANPP) increased by about 50 percent across a range of 
sites with different initial productivity potentials (figure 
7-2). This loss of diversity also occurs along natural 
productivity gradients (Stevens et al. 2004). Despite 
these common responses across sites and systems, 
the mechanisms causing this decline in diversity as 
productivity increases are still being debated, and long-
term responses have not been evaluated. 

Figure 7-2. Response ratios for the last year of data for seven 
grassland sites receiving long-term N additions of 9 to 13 g/
m2/yr. (A) ANPPn in fertilized plots over ANPPc in control plots 
versus mean ANPPc of control plots. (B) species richness in 
fertilized plots (Dn) over species richness in control plots (Dc) 
versus mean ANPPc of control plots. Dashed lines indicate 
a response ratio of 1, meaning the N fertilization plots show 
no difference from control plots. (Redrawn from Gough et al. 
2000.)

Functional traits may provide mechanistic insights 
into a plant community’s response to fertilization 
(Bai et al. 2004). Species traits reflect evolutionarily 
derived strategies for resource capture and interspecific 
interactions, which influence community structure 
and ecosystem processes (Diaz and Cabido 2001). 
An analysis of more than 900 species responses from 
34 nitrogen fertilization experiments across North 
America showed that both trait-neutral mechanisms 
(for example, rarity) and trait-based mechanisms (such 
as plant height) operated simultaneously to influence 
diversity loss as production increased (Suding et al. 
2005). Thus, rarity, species identity, and functional 
traits affect species responses to increasing productivity 
in long-term nitrogen fertilization experiments. Because 
these responses may be highly dependent on context, 
they challenge our ability to predict how communities 
will change as the amount of reactive nitrogen 
continues to increase globally.

Conclusions

Human activities have greatly altered the nitrogen 
cycle. As a consequence, net primary production has 
increased globally and biodiversity has decreased 
in many herbaceous plant communities. Trait-based 
analyses may provide insight into the mechanisms 
behind biodiversity loss in response to increased 
nitrogen availability. Long-term studies are needed 
to document these patterns under variable climatic 
conditions.
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