

Agricultural Research Service

Technical Bulletin Number 1931

September 2013

Long-Term Trends in Ecological Systems:

A Basis for Understanding Responses to Global Change

Contents

Contributors	VIII
Technical Consultants	X
Introduction to Cross-Site Comparisons and History and Organization of the EcoTrends Project	
Chapter 1: Long-Term Trends in Ecological Systems: An Introduction to Cross-Site Comparisons and Relevance to Global Change Studies	1
Chapter 2: History and Organization of the EcoTrends Project	21
Cross-Site Comparisons of Ecological Responses to Global Change Drivers	
Chapter 3: Cross-Site Comparisons of Ecological Responses to Climate and Climate-Related Drivers	28
Chapter 4: Cross-Site Comparisons of State-Change Dynamics	36
Chapter 5: Patterns of Net Primary Production Across Sites	42
Chapter 6: Cross-Site Comparisons of Precipitation and Surface Water Chemistry	46
Chapter 7: Cross-Site Comparisons of Ecological Responses to Long-Term Nitrogen Fertilization	
Chapter 8: Long-Term Trends in Human Population Growth and Economy Across Sites	54
Chapter 9: Disturbance Regimes and Ecological Responses Across Sites	58
Chapter 10: Cross-Site Studies "By Design": Experiments and Observations That Provide New Insights	72
Long-Term Trends in Global Change Drivers and Responses at Site and Continental Scales	I
Chapter 11: Long-Term Trends in Climate and Climate-Related Drivers	81
Chapter 12: Long-Term Trends in Precipitation and Surface Water Chemistry	115
Chapter 13: Long-Term Trends in Human Demography and Economy Across Sites	162
Chapter 14: Long-Term Trends in Production, Abundance, and Richness of Plants and Animals	191
Chapter 15: Management and Policy Implications of Cross- and Within-Site Long-Term Studies	206
Chapter 16: Recommendations for Data Accessibility	216
Chapter 17: Long-Term Research Across Sites, Ecosystems, and Disciplines: Synthesis and	
Research Needs	226
Appendices	
Appendix 1: Site Descriptions	234
Appendix 2: Average (Standard Error) Maximum, Mean, and Minimum Air Temperature and Annual Precipitation at Each Site	312

Appendix 3: Average (Standard Error) Ice Duration, Sea Level, Streamflow, Water Clarity, and Water Temperature for Sites With Data	
Appendix 4: Regression Coefficients and R ² Values for Nine Climatic Variables for Which Linear	
Regression Against Time Is Significant ($p < 0.05$)	. 316
Appendix 5: Annual Average (Standard Error) Nitrogen (as Nitrate) From Various Sources at Sites With Data	. 319
Appendix 6: Regression Coefficients and R ² Values for Nitrogen (as Nitrate) From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05)	. 321
Appendix 7: Annual Average (Standard Error) Nitrogen (as Ammonium) From Various Sources at Sites With Data	. 323
Appendix 8: Regression Coefficients and R^2 Values for Nitrogen (as Ammonium) From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05)	. 325
Appendix 9: Annual Average (Standard Error) Sulfur (as Sulfate) From Various Sources at Sites With Data	. 326
Appendix 10: Regression Coefficients and R ² Values for Sulfur (Sulfate) From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05)	. 328
Appendix 11: Annual Average (Standard Error) Chloride From Various Sources at Sites With Data .	. 330
Appendix 12: Regression Coefficients and R ² Values for Chloride From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05)	. 332
Appendix 13: Annual Average (Standard Error) Calcium From Various Sources at Sites With Data	. 334
Appendix 14: Regression Coefficients and R ² Values for Calcium From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05)	. 336
Appendix 15: Human Population and Economy Variables in 2000 for the Focal County of Each Site as Grouped by Ecosystem Type	
Appendix 16: Annual Average (Standard Error) Aboveground Net Primary Production (ANPP) at Sites With Data	. 341
Appendix 17: Other Measures of Average (Standard Error) Terrestrial Production at Sites With Data	343
Appendix 18: Average (Standard Error) Aquatic Production at Sites With Data	. 344
Appendix 19: Average (Standard Error) Biomass of Primary Producers (Plants, Algae) for Sites With Data	
Appendix 20: Average (Standard Error) Plant Species Richness for Sites With Data	. 347
Appendix 21: Average (Standard Error) Animal Abundance for Sites With Data	. 349
Appendix 22: Average (Standard Error) Animal Species Richness for Sites With Data	. 352
Appendix 23: Regression Coefficients and R^2 Values for Plant and Animal Variables for Which Line Regression of Each Variable Against Time Is Significant (p < 0.05) and the Trend	
Appears Linear	. 353
Appendix 24: Lead Principal Investigator(s) (PI), Information Managers (IM), and Administrative Program of the LTER Programs	355
Appendix 25: Researchers Involved in the EcoTrends Project at Non-LTER Sites	

Appendix 26: List of Stations and Length of Record for Each Climate Variable by Site	362
Appendix 27: List of Stations and Length of Record for Each Precipitation or Surface Water	
Chemistry Variable by Site	367
Appendix 28: List of Stations and Length of Record for Each Plant and Animal Variable by Site, as	
Grouped by Ecosystem Type	371
Index	i

Long-Term Trends in Ecological Systems:

Appendix 9. Annual average (standard error) sulfur (as sulfate) from various sources at sites with data

(Sites are grouped by ecosystem type. See Appendix 27 for length of record for each station at a site.)

Site code	Precipitation (concentration) mg/L	Wet deposition kg/ha	Lake mg/L	Stream mg/L
Alpine and	l arctic			
ARC	0.08 (0.01)*			
GLA	0.18 (0.01)*	2.15 (0.10)		
LVW	0.18 (0.01)*	1.80 (0.10)*		0.7 (0.03)*
MCM	0.10 (0.01)	1.00 (0.10)	58 (2.83)	0.7 (0.03)
NWT	0.18 (0.01)*	3.18 (0.17)	2 (0.19)*	
Aridlands				
JRN	0.60 (0.05)	0.04 (0.003)*		
RCE	0.12 (0.01)*	0.30 (0.03)		
WGE	0.24 (0.02)	0.82 (0.09)		
Coastal				
FCE	0.24 (0.004)	3.55 (0.13)*		
PIE	0.60 (0.03)*	6.59 (0.28)*		
VCR	0.62 (0.06)	4.71 (0.52)		
Eastern for	rests			
BEN	0.38 (0.02)	6.29 (0.45)		
CRO	0.35 (0.01)*	4.81 (0.18)		
CWT	0.40 (0.02)*	6.85 (0.33)*		
FER	0.81 (0.04)*	10.47 (0.60)*		1.5 (0.03)
HBR	0.51 (0.03)*	6.19 (0.32)*		1.8 (0.04)*
HFR	0.51 (0.03)*	6.30 (0.30)*		
LUQ	0.26 (0.01)	8.22 (0.47)		0.7 (0.03)
MAR	0.32 (0.02)*	2.45 (0.14)*		
NTL	0.38 (0.02)*	2.99 (0.22)*	1 (0.03)*	
SAN	0.44 (0.01)	4.95 (0.19)		
TAL	0.33 (0.01)*	4.69 (0.19)*		
WBW	0.69 (0.02)*	8.96 (0.33)*		0.8 (0.02)
	grasslands and savannas			
CDR	0.36 (0.01)	2.63 (0.19)		
GRL	0.37 (0.01)	3.42 (0.12)*		
KBS	0.77 (0.04)*	7.05 (0.46)*		6.6 (0.05)
KNZ	0.41 (0.01)*	3.42 (0.15)*		
SGS	0.33 (0.02)*	1.07 (0.08)*		
Urban				
BES	0.67 (0.03)*	7.28 (0.35)*		8.6 (0.21)
CAP	0.89 (0.27)	5.07 (2.28)		22.6 (2.01)*

A Basis for Understanding Responses to Global Change

Appendix 9. Annual average (standard error) sulfur (as sulfate) from various sources at sites with data— Continued

Site code	Precipitation (concentration) mg/L	Wet deposition kg/ha	Lake mg/L	Stream mg/L
Western fo	prests			
AND	0.06 (0.002)*	1.20 (0.05)		0.1 (0.003)
BLA	0.05 (0.005)	0.39 (0.04)		
BNZ	0.06 (0.004)	0.23 (0.02)		
CSP	0.08 (0.005)*	0.75 (0.07)*		
FRA	0.18 (0.01)*	3.18 (0.17)		
PRI	0.07 (0.005)	0.54 (0.02)		

^{*} indicates significant slopes (p < 0.05) for regression of each variable against time.