

United States Department of Agriculture

Agricultural Research Service

Technical Bulletin Numbe<u>r 1931</u>

September 2013

Long-Term Trends in Ecological Systems: A Basis for Understanding Responses to Global Change

Contents

Contributors	VIII
Fechnical Consultants	X

Introduction to Cross-Site Comparisons and History and Organization of the EcoTrends Project

Chapter 1: Long-Term Trends in Ecological Systems: An Introduction to Cross-Site Comparisons	
and Relevance to Global Change Studies	1
Chapter 2: History and Organization of the EcoTrends Project	21

Cross-Site Comparisons of Ecological Responses to Global Change Drivers

Chapter 3:	Cross-Site Comparisons of Ecological Responses to Climate and Climate-Related	
-	Drivers	28
Chapter 4:	Cross-Site Comparisons of State-Change Dynamics	36
Chapter 5:	Patterns of Net Primary Production Across Sites	42
Chapter 6:	Cross-Site Comparisons of Precipitation and Surface Water Chemistry	46
Chapter 7:	Cross-Site Comparisons of Ecological Responses to Long-Term Nitrogen Fertilization	51
Chapter 8:	Long-Term Trends in Human Population Growth and Economy Across Sites	54
Chapter 9:	Disturbance Regimes and Ecological Responses Across Sites	58
Chapter 10): Cross-Site Studies "By Design": Experiments and Observations That Provide New	
	Insights	72

Long-Term Trends in Global Change Drivers and Responses at Site and Continental Scales

Chapter 11: Long-Term Trends in Climate and Climate-Related Drivers	81
Chapter 12: Long-Term Trends in Precipitation and Surface Water Chemistry	115
Chapter 13: Long-Term Trends in Human Demography and Economy Across Sites	162
Chapter 14: Long-Term Trends in Production, Abundance, and Richness of Plants and Animals	191
Chapter 15: Management and Policy Implications of Cross- and Within-Site Long-Term Studies	206
Chapter 16: Recommendations for Data Accessibility	216
Chapter 17: Long-Term Research Across Sites, Ecosystems, and Disciplines: Synthesis and	
Research Needs	.226
Appendices	
Appendix 1: Site Descriptions	.234
Appendix 2: Average (Standard Error) Maximum, Mean, and Minimum Air Temperature and Annual Precipitation at Each Site	.312

Appendix 3: Average (Standard Error) Ice Duration, Sea Level, Streamflow, Water Clarity, and Water Temperature for Sites With Data	
Appendix 4: Regression Coefficients and R^2 Values for Nine Climatic Variables for Which Linear Regression Against Time Is Significant (p < 0.05)	. 316
Appendix 5: Annual Average (Standard Error) Nitrogen (as Nitrate) From Various Sources at Sites With Data	. 319
Appendix 6: Regression Coefficients and R ² Values for Nitrogen (as Nitrate) From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05)	. 321
Appendix 7: Annual Average (Standard Error) Nitrogen (as Ammonium) From Various Sources at Sites With Data	. 323
Appendix 8: Regression Coefficients and R ² Values for Nitrogen (as Ammonium) From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05)	. 325
Appendix 9: Annual Average (Standard Error) Sulfur (as Sulfate) From Various Sources at Sites With Data	. 326
Appendix 10: Regression Coefficients and R ² Values for Sulfur (Sulfate) From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05)	. 328
Appendix 11: Annual Average (Standard Error) Chloride From Various Sources at Sites With Data .	. 330
Appendix 12: Regression Coefficients and R ² Values for Chloride From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05)	. 332
Appendix 13: Annual Average (Standard Error) Calcium From Various Sources at Sites With Data	. 334
Appendix 14: Regression Coefficients and R ² Values for Calcium From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05)	. 336
Appendix 15: Human Population and Economy Variables in 2000 for the Focal County of Each Site, as Grouped by Ecosystem Type	
Appendix 16: Annual Average (Standard Error) Aboveground Net Primary Production (ANPP) at Sites With Data	. 341
Appendix 17: Other Measures of Average (Standard Error) Terrestrial Production at Sites With Data	343
Appendix 18: Average (Standard Error) Aquatic Production at Sites With Data	. 344
Appendix 19: Average (Standard Error) Biomass of Primary Producers (Plants, Algae) for Sites With Data	
Appendix 20: Average (Standard Error) Plant Species Richness for Sites With Data	. 347
Appendix 21: Average (Standard Error) Animal Abundance for Sites With Data	. 349
Appendix 22: Average (Standard Error) Animal Species Richness for Sites With Data	. 352
Appendix 23: Regression Coefficients and R ² Values for Plant and Animal Variables for Which Line. Regression of Each Variable Against Time Is Significant (p < 0.05) and the Trend	ar
Appears Linear	. 353
Appendix 24: Lead Principal Investigator(s) (PI), Information Managers (IM), and Administrative Program of the LTER Programs	. 355
Appendix 25: Researchers Involved in the EcoTrends Project at Non-LTER Sites	. 359

Appendix 26: List of Stations and Length of Record for Each Climate Variable by Site	362
Appendix 27: List of Stations and Length of Record for Each Precipitation or Surface Water Chemistry Variable by Site	. 367
Appendix 28: List of Stations and Length of Record for Each Plant and Animal Variable by Site, as	
Grouped by Ecosystem Type	. 371
Index	i

Appendix 13. Annual average (standard error) calcium from various sources at sites with data

Site code	Precipitation (concentration)	Wet deposition	Lake	Stream
	mg/L	kg/ha	mg/L	mg/L
Alpine and arctic				
ARC	0.19 (0.07)			
GLA	0.20 (0.02)	2.4 (0.21)*		
LVW	0.19 (0.02)	1.8 (0.17)		2 (0.04)*
MCM			79 (3.8)	
NWT	0.20 (0.01)	3.6 (0.37)*	4 (0.2)*	
Aridlands				
JRN	1.36 (0.18)*	0.1 (0.01)		
RCE	0.14 (0.01)*	0.3 (0.03)*		
WGE	0.24 (0.02)	0.8 (0.10)		
Coastal				
FCE	0.13 (0.01)*	1.9 (0.10)		
PIE	0.08 (0.01)	0.8 (0.06)		
VCR	0.16 (0.02)	1.9 (0.22)		
Eastern forests				
BEN	0.04 (0.002)*	0.7 (0.05)*		
CRO	0.11 (0.01)	1.5 (0.08)		
CWT	0.06 (0.004)	1.0 (0.06)*		
FER	0.15 (0.01)*	1.9 (0.13)*		2 (0.03)
HBR	0.06 (0.004)*	0.7 (0.05)*		1 (0.04)*
HFR	0.06 (0.003)	0.7 (0.04)		
LUQ	0.14 (0.005)	4.4 (0.23)		4 (0.13)*
MAR	0.20 (0.01)	1.5 (0.06)*		
NTL	0.19 (0.01)	1.5 (0.08)*	10 (0.2)*	
SAN	0.09 (0.004)	1.0 (0.05)		
TAL	0.09 (0.01)*	1.3 (0.08)*		
WBW	0.11 (0.01)	1.5 (0.06)		24 (0.57)
Temperate grasslan	ds and savannas			
CDR	0.31 (0.02)	2.3 (0.23)		
GRL	0.31 (0.02)	2.7 (0.15)		
KBS	0.22 (0.01)*	2.0 (0.09)*		70 (0.21)
KNZ	0.36 (0.01)	3.0 (0.14)*		
SGS	0.28 (0.02)	0.9 (0.06)		

(Sites are grouped by ecosystem type. See Appendix 27 for length of record for each station at a site.)

A Basis for Understanding Responses to Global Change

Site code	Precipitation (concentration)	Wet deposition	Lake	Stream
	mg/L	kg/ha	mg/L	mg/L
Urban				
BES	0.08 (0.004)*	0.8 (0.03)		
CAP	1.04 (0.13)			58 (3.42)
Western forests				
AND	0.03 (0.001)*	0.6 (0.04)		3 (0.04)
BLA	0.03 (0.002)	0.2 (0.03)		
BNZ	0.03 (0.002)*	0.1 (0.01)		
CSP	0.03 (0.002)*	0.3 (0.03)		
FRA	0.20 (0.01)	3.6 (0.37)*		
PRI	0.06 (0.004)	0.4 (0.02)		

Appendix 13. Annual average (standard error) calcium from various sources at sites with data— *Continued*

* Slope is significant (p < 0.05) for regression of each variable against time.