

United States Department of Agriculture

Agricultural Research Service

Technical Bulletin Numbe<u>r 1931</u>

September 2013

Long-Term Trends in Ecological Systems: A Basis for Understanding Responses to Global Change

Contents

Contributors	VIII
Technical Consultants	X

Introduction to Cross-Site Comparisons and History and Organization of the EcoTrends Project

Chapter 1: Long-Term Trends in Ecological Systems: An Introduction to Cross-Site Comparisons	
and Relevance to Global Change Studies	1
Chapter 2: History and Organization of the EcoTrends Project	21

Cross-Site Comparisons of Ecological Responses to Global Change Drivers

hapter 3: Cross-Site Comparisons of Ecological Responses to Climate and Climate-Related	
Drivers	28
hapter 4: Cross-Site Comparisons of State-Change Dynamics	36
hapter 5: Patterns of Net Primary Production Across Sites	42
hapter 6: Cross-Site Comparisons of Precipitation and Surface Water Chemistry	46
hapter 7: Cross-Site Comparisons of Ecological Responses to Long-Term Nitrogen Fertilization	51
hapter 8: Long-Term Trends in Human Population Growth and Economy Across Sites	54
hapter 9: Disturbance Regimes and Ecological Responses Across Sites	58
hapter 10: Cross-Site Studies "By Design": Experiments and Observations That Provide New	
Insights	72

Long-Term Trends in Global Change Drivers and Responses at Site and Continental Scales

Chapter 11: Long-Term Trends in Climate and Climate-Related Drivers	81
Chapter 12: Long-Term Trends in Precipitation and Surface Water Chemistry	115
Chapter 13: Long-Term Trends in Human Demography and Economy Across Sites	162
Chapter 14: Long-Term Trends in Production, Abundance, and Richness of Plants and Animals	191
Chapter 15: Management and Policy Implications of Cross- and Within-Site Long-Term Studies	206
Chapter 16: Recommendations for Data Accessibility	216
Chapter 17: Long-Term Research Across Sites, Ecosystems, and Disciplines: Synthesis and	
Research Needs	226
Appendices	
Appendix 1: Site Descriptions	234
Appendix 2: Average (Standard Error) Maximum, Mean, and Minimum Air Temperature and Annual Precipitation at Each Site	.312

Appendix 3: Average (Standard Error) Ice Duration, Sea Level, Streamflow, Water Clarity, and Water Temperature for Sites With Data	er . 314
Appendix 4: Regression Coefficients and R^2 Values for Nine Climatic Variables for Which Linear Regression Against Time Is Significant (p < 0.05)	. 316
Appendix 5: Annual Average (Standard Error) Nitrogen (as Nitrate) From Various Sources at Sites With Data	. 319
Appendix 6: Regression Coefficients and R ² Values for Nitrogen (as Nitrate) From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05)	. 321
Appendix 7: Annual Average (Standard Error) Nitrogen (as Ammonium) From Various Sources at Sites With Data	. 323
Appendix 8: Regression Coefficients and R ² Values for Nitrogen (as Ammonium) From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05)	. 325
Appendix 9: Annual Average (Standard Error) Sulfur (as Sulfate) From Various Sources at Sites With Data	. 326
Appendix 10: Regression Coefficients and R ² Values for Sulfur (Sulfate) From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05)	. 328
Appendix 11: Annual Average (Standard Error) Chloride From Various Sources at Sites With Data .	. 330
Appendix 12: Regression Coefficients and R ² Values for Chloride From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05)	. 332
Appendix 13: Annual Average (Standard Error) Calcium From Various Sources at Sites With Data	. 334
Appendix 14: Regression Coefficients and R ² Values for Calcium From Various Sources for Which Linear Regression Against Time Is Significant (p < 0.05)	. 336
Appendix 15: Human Population and Economy Variables in 2000 for the Focal County of Each Site, as Grouped by Ecosystem Type	, . 338
Appendix 16: Annual Average (Standard Error) Aboveground Net Primary Production (ANPP) at Sites With Data	. 341
Appendix 17: Other Measures of Average (Standard Error) Terrestrial Production at Sites With Data	343
Appendix 18: Average (Standard Error) Aquatic Production at Sites With Data	. 344
Appendix 19: Average (Standard Error) Biomass of Primary Producers (Plants, Algae) for Sites With Data	n . 345
Appendix 20: Average (Standard Error) Plant Species Richness for Sites With Data	. 347
Appendix 21: Average (Standard Error) Animal Abundance for Sites With Data	. 349
Appendix 22: Average (Standard Error) Animal Species Richness for Sites With Data	. 352
Appendix 23: Regression Coefficients and R ² Values for Plant and Animal Variables for Which Line. Regression of Each Variable Against Time Is Significant (p < 0.05) and the Trend	ar
Appears Linear	. 353
Appendix 24: Lead Principal Investigator(s) (PI), Information Managers (IM), and Administrative Program of the LTER Programs	. 355
Appendix 25: Researchers Involved in the EcoTrends Project at Non-LTER Sites	. 359

Appendix 26: List of Stations and Length of Record for Each Climate Variable by Site	362
Appendix 27: List of Stations and Length of Record for Each Precipitation or Surface Water Chemistry Variable by Site	. 367
Appendix 28: List of Stations and Length of Record for Each Plant and Animal Variable by Site, as	
Grouped by Ecosystem Type	. 371
Index	i

Appendix 10. Regression coefficients and R^2 values for sulfur (sulfate) from various sources for which linear regression against time is significant (p < 0.05)

(Sites are grouped by ecosystem type. See Appendix 27 for length of record for each station at a site.)

Site code	Source	Slope	Y-intercept ¹	R ²	
Alpine and arc	tic				
ARC	Precipitation (concentration)	-0.007	0.1	0.3	
GLA	Precipitation (concentration)	-0.002	0.2	0.3	
LVW	Precipitation (concentration)	-0.003	0.2	0.5	
	Stream	0.018	0.6	0.4	
	Wet deposition	-0.046	2.4	0.5	
NWT	Lake	0.091	1.0	0.5	
	Precipitation (concentration)	-0.004	0.2	0.6	
Aridlands					
JRN	Wet deposition	-0.001	0.1	0.4	
RCE	Precipitation (concentration)	-0.003	0.2	0.2	
Coastal					
FCE	Wet deposition	0.037	2.9	0.2	
PIE	Precipitation (concentration)	-0.015	0.8	0.6	
	Wet deposition	-0.127	8.4	0.5	
Eastern forests	5				
CRO	Precipitation (concentration)	-0.003	0.4	0.2	
CWT	Precipitation (concentration)	-0.007	0.5	0.4	
	Wet deposition	-0.158	9.6	0.6	
FER	Precipitation (concentration)	-0.022	1.2	0.7	
	Wet deposition	-0.293	15.2	0.6	
HBR	Precipitation (concentration)	-0.015	0.8	0.8	
	Stream	-0.022	2.2	0.9	
	Wet deposition	-0.157	8.8	0.7	
HFR	Precipitation (concentration)	-0.017	0.8	0.7	
	Wet deposition	-0.135	8.3	0.4	
MAR	Precipitation (concentration)	-0.009	0.5	0.7	
	Wet deposition	-0.075	3.7	0.7	
NTL	Lake	-0.016	1.2	0.7	
	Precipitation (concentration)	-0.013	0.6	0.8	
	Wet deposition	-0.120	4.8	0.7	
TAL	Precipitation (concentration)	-0.005	0.4	0.4	
	Wet deposition	-0.050	5.4	0.2	
WBW	Precipitation (concentration)	-0.013	0.9	0.7	
	Wet deposition	-0.120	10.8	0.3	

Site code	Source	Slope	Y-intercept ¹	R ²	
Temperate g	rasslands and savannas				
GRL	Wet deposition	-0.051	4.1	0.3	
KBS	Precipitation (concentration)	-0.023	1.1	0.9	
	Wet deposition	-0.231	10.8	0.8	
KNZ	Precipitation (concentration)	-0.006	0.5	0.6	
	Wet deposition	-0.039	4.0	0.2	
SGS	Precipitation (concentration)	-0.007	0.4	0.3	
2.00	Wet deposition	-0.031	1.6	0.4	
Urban					
BES	Precipitation (concentration)	-0.017	0.9	0.7	
	Wet deposition	-0.170	8.9	0.4	
CAP	Stream	-1.215	29.9	0.4	
Western fore	sts				
AND	Precipitation (concentration)	-0.001	0.1	0.3	
CSP	Precipitation (concentration)	-0.002	0.1	0.5	
	Wet deposition	-0.022	1.1	0.2	
FRA	Precipitation (concentration)	-0.004	0.2	0.6	

Appendix 10. Regression coefficients and R^2 values for sulfur (sulfate) from various sources for which linear regression against time is significant (p < 0.05)—*Continued*

¹ Y-intercept was calculated for the first year of a dataset, which contains records of one variable over time for one site.