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Rangelands cover about 50% of the earth’s land surface, are in remote areas and
have low population densities, all of which provide an ideal opportunity for
remote sensing applications from unmanned aircraft systems (UAS). In this
article, we describe a proven workflow for UAS-based remote sensing, and discuss
geometric errors of image mosaics and classification accuracies at different levels
of detail. We report on several UAS missions over rangelands in Idaho and New
Mexico, USA, where we acquired 6-8 cm resolution aerial photography and
concurrent field measurements. The geometric accuracies of the image mosaics
were in the 1-2 m range, and overall classification accuracies for vegetation maps
ranged from 78-92%. Despite current FAA regulations that restrict UAS
operations to distances within line-of-sight of the UAS, our results show that
UAS are a viable platform for obtaining very high-resolution remote sensing
products for applied vegetation mapping of rangelands.

Keywords: unmanned aircraft system; UAS; digital camera; photogrammetry;
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1. Introduction

Remote sensing plays an important role in rangeland monitoring and assessment,
because rangelands are vast, comprising approximately 50% of the world’s land
area (Lund 2007), are often difficult to access, and the cost of ground monitoring
can be high. Image sensors on satellite or aerial platforms collect earth
observation data, and various scales of imagery have been used for rangeland
applications to measure vegetation and soil parameters: satellite imagery at
various resolutions (Clark et al. 2001, Chopping et al. 2006, Laliberte et al. 2007),
videography (Phinn et al. 1996, Pickup et al. 2000), aerial photography (Yu et al.
2006, Stow et al. 2008) from piloted aircraft, and ground-based photography
(Booth et al. 2005).

Aerial photography from unmanned aircraft systems (UAS) can bridge the gap
between ground-based rangeland measurements and remotely sensed imagery from
piloted aerial and satellite platforms, both in terms of image scale and image
acquisition costs. UAS have several advantages over piloted aircraft: UAS can be
deployed quickly and repeatedly, for example to assess flooding after sudden
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rainfalls; there is no risk to an on-board pilot; they can be used to obtain very high-
resolution imagery at lower image acquisition costs than with piloted aircraft (Rango
et al. 2006). UAS also have the potential to be a cheaper platform for acquiring
imagery than piloted aircraft, although this is highly dependent on the number of
ground crew required by current Federal Aviation Administration (FAA)
regulations.

Fine resolution imagery plays an important role in rangeland assessments for the
classification of spatial patterns of vegetation and soil patches at multiple spatial
scales (Bestelmeyer et al. 2006). These fine-scale patterns cannot be resolved with
coarser resolution satellite imagery, but are important indicators of erosion risk,
wildlife habitat quality and rangeland degradation. Landscape metrics derived from
very high resolution imagery can be used in rangeland health assessments and
ecosystem models.

Because rangelands are usually located in relatively remote areas and have low
population densities, UAS are ideally suited for potentially flying long-duration
remote sensing missions over these areas. In general, civil aviation regulatory
agencies are more inclined to permit UAS flights, especially low-altitude flights, over
remote areas because of less air traffic and reduced danger to people and buildings on
the ground (Rango and Laliberte 2010).

Large UAS, such as Ikhana and Global Hawk, have been used or proposed
for use in remote sensing in wildfire missions by NASA (Ambrosia and Wegener
2009), while the use of small UAS (<50 kg) for remote sensing purposes has
been less common. This is primarily related to the limited payload capability of
small UAS, although recent advances in the miniaturization of sensors, global
positioning system (GPS) and inertial measurement unit (IMU) (Patterson and
Brescia 2008, Nagai et al. 2009) show great promise for UAS as capable remote
sensing platforms. Small UAS remote sensing applications have included assessing
water stress in crops (Berni et al. 2009), crop monitoring (Hunt et al. 2010),
riparian forest mapping (Dunford et al. 2009), and specifically in rangelands,
estimation of shrub utilization (Quilter and Anderson 2001) and detection of
invasive species (Hardin et al. 2007).

At the US Department of Agriculture (USDA), Jornada Experimental Range
(JER) in New Mexico, researchers have been investigating the use of UAS for
applied rangeland remote sensing for several years (Rango et al. 2006, Laliberte and
Rango 2009, Laliberte et al. 2010). Efforts have focused on developing a workflow
for UAS-based aerial photo acquisition, image processing, production of orthomo-
saics and derivation of classification maps. While many of the image processing steps
have their origins in traditional aerial image processing and analysis, some aspects
are unique to UAS-acquired imagery, specifically the use of low-cost digital cameras,
small image footprints and low accuracy GPS/IMU data. This has resulted in the
need to adapt existing approaches or develop new approaches for image processing
of UAS-derived imagery.

The objectives of this article are to report on the results of several UAS remote
sensing missions, and describe a proven workflow for UAS-based rangeland remote
sensing. We will focus specifically on the photogrammetric processing of the images,
the geometric accuracies of the orthomosaics and the classification accuracies
obtained at different levels of detail. We also address the regulatory issues associated
with UAS operations, and discuss the future potential of UAS-based remote sensing
for rangeland applications.
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2. Methods
2.1 UAS and sensors

The small UAS used in our missions was a BAT 3 UAS manufactured by MLB Co.
(Mountain View, CA) (Figure 1). The BAT has a 1.8 m wingspan, weighs 10 kg, and
has an endurance of 2-6 h. The system is catapult launched from the top of a vehicle,
and can be landed manually or autonomously. The GPS-based navigation is based
on preprogrammed waypoints, which can be changed and uploaded to the aircraft in
real time. The system is equipped with a return-to-home mode if the 900 MHz link
or GPS is lost. The UAS can be controlled manually via a 72 MHz link.

The BAT carries two sensors: a colour video camera with optical zoom capability
in-flight and live video downlink, and a Canon SD 900 ten megapixel digital camera
used for image acquisition for subsequent production of classification maps. Imagery
is acquired from an altitude of 214 m above ground. Based on the camera’s sensor
size of 3072 x 2304 pixels, and a field of view of 53.1°, the image footprint measures
213 m x 160 m, with a nominal ground resolved distance of 6 cm. Images are
acquired at 75% forward lap and 40% side lap to ensure sufficient overlap for
photogrammetric processing. The images are stored on the camera’s 16 gigabyte
memory card, and for each image, a timestamp, GPS location, elevation, roll, pitch
and heading are recorded by the flight computer. The GPS module (TIM-LP
Antaris™) has an update rate of 4 Hz, and the accuracy is 2.5 m. The accuracy of the
attitude data from the IMU is rated as +2° for roll and pitch, and +5° for heading.

2.2 Location of missions and regulatory issues

Remote sensing missions have been flown over southern New Mexico since 2006 and
over southwestern Idaho in 2008 (Figure 2). The New Mexico site is the home base
for the UAS operations at the JER, a 78,000 ha field experiment station of the
USDA Agricultural Research Service. The western portion of the JER is situated in
the National Airspace System (NAS), while the eastern portion adjacent to White

Figure 1. BAT 3 UAS ready to be launched from the catapult. One person holds the launch
cord, the second person is on stand-by for manual control, the third person serves as visual
observer and performs radio communications.
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Figure 2. Locations of UAS missions for rangeland remote sensing projects. The overview
map (a) shows the locations in Idaho and New Mexico, USA. Flight areas are depicted in
white outlines for the 2008 flights in Idaho (b), and for flights conducted at the Jornada
Experimental Range (JER) in New Mexico from 2006 to 2010 (c). The black outline represents
the JER. The white line in (c) is the boundary between restricted airspace east of the line, and
the NAS west of the line.

Sands Missile Range is in restricted airspace. The FAA is charged with regulating
UAS operations in the NAS. Those regulations require a Certificate of Authoriza-
tion (COA) from the FAA (FAA 2010). At the JER, the BAT is operated in the NAS
under a COA issued to the New Mexico State University Unmanned Aircraft
Systems Flight Test Center, formed through a partnership between the FAA and
New Mexico State University. Our flight data are shared with New Mexico State
University and FAA to assist with development of standards and regulations for
UAS operators. In the restricted airspace, UAS flights are conducted with
permission of White Sands Missile Range. In Idaho, flights were conducted under
a COA issued to USDA.

Our COA regulations limit flights to 800 m ('2 mile) horizontal distance and
300 m (1000 ft) vertical distance to the visual observers. The UAS team consists of a
minimum of a pilot in command, internal pilot (ground station operator), external
pilot (radio control pilot) and three visual observers. All personnel have a FAA class
IT medical certificate, the pilots have completed private pilot ground school and the
pilot in command has a private pilot’s license. Additional personnel include payload
and catapult support.

Due to the COA limitations, our flight areas are limited to a length of 1.6 km,
while width varies (commonly 0.8-1.6 km). If larger areas have to be covered,
multiple flights are conducted, or external pilots and visual observers are moved
while keeping the UAS in a line-of-sight holding pattern. In Idaho, three flight areas
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were covered in 2008, while in New Mexico, 62 flight arcas have been flown since
2006. Overall, we have acquired more than 14,500 images, processed into 65 image
mosaics with an average of 234 images per mosaic. In this article, we are reporting on
the accuracies of vegetation classifications of image mosaics for two areas in Idaho
(65 ha and 83 ha) and two in New Mexico (5 ha, 10 ha), and on geometric accuracy
assessments for one Idaho site (116 ha) and one New Mexico site (173 ha).

2.3 Image processing
2.3.1 Orthorectification and mosaicking

The orthorectification of the imagery was performed using a combination of a
customized procedure termed PreSync, followed by orthorectification using Leica
Photogrammetry Suite (LPS™) (Erdas 2010). The flowchart (Figure 3) outlines the
process. The exterior orientation data, consisting of position (X,Y,Z), and attitude
(roll, pitch, heading) data from the BAT’s flight computer are not sufficiently
accurate to use directly in LPS due to the relatively low-cost GPS and IMU units,
and camera/flight data synchronization error of approximately 1 s. PreSync is
designed to improve the accuracy of the exterior orientation data, so that
orthorectification can be performed in LPS. The approach also minimizes or
eliminates the use of manually input ground control points, which are difficult to
locate in areas with few distinguishing features and on large numbers of small-
footprint images. Inputs to the PreSync procedure include the UAS images of the
flight area, initial tie points, initial exterior orientation, a 1 m resolution digital
orthoquad (DOQ), a 10 m digital elevation model (DEM) and the camera’s interior
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Figure 3. Flowchart of UAS image processing for adjustment of exterior orientation (EO)
parameters with the PreSync procedure, and subsequent orthorectification and mosaicking
with LPS.
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orientation parameters (radial lens distortion, principal point offset, focal length)
derived from a camera calibration (Fryer 1996). The initial tie points are derived
using Autopano Pro™ (Kolor 2009), a program that extracts image tie points
automatically without requiring initial exterior orientation data or image-to-flight
line matching.

The PreSync workflow consists of combining the reference image (DOQ), the
DEM, the exterior and interior orientation parameters, and tie points into a sensor/
environment model, and simulating image acquisition. Simulated imaging projects
points from the image plane onto the DEM to locate tie points and to extract a patch
of the reference image. Each tie point is evaluated by the variance of its location on
multiple images. The reference image patch is transformed to match the sensor array
and is evaluated by computing the covariance with the actual sensor image. The
exterior orientation is repeatedly adjusted by various means, and is scored based on
the tie points and the image covariance. After several iterations, the best scoring
value is recorded as the corrected exterior orientation for the image, and used as
input to LPS for orthorectification. The main steps of PreSync are (1) initial tie point
alignment, (2) rigid block adjustment, (3) individual image adjustment and (4)
realignment of tie points. We briefly describe the four steps, but additional detail
about the PreSync procedure can be found in Laliberte ez al. (2008).

In the initial tie point alignment, a mean ground coordinate is assigned to each tie
point derived from Autopano Pro, and the exterior orientation of each image is
adjusted to minimize the root mean square error (RMSE) of the image’s tie points.
The next step is a rigid block adjustment of the entire block of images with the goal
of maximizing the average covariance of the block. The third step, individual
adjustment of each image’s exterior orientation value, uses the gradient following
search method to maximize image covariance. This reduces relatively large tip-tilt
variability between images and lets each image seek its preferred orientation within
the local space. The final step is the realignment of tie points while maintaining the
tip-tilt corrections from the prior step. If further alignment is required, the rigid
block adjustment, and if required, the individual image adjustment, are repeated.
The running times for PreSync currently average 2 min per image. The improved
exterior orientation values and tie points with ground coordinates are used as input
to orthorectification in LPS. Additional automatic tic point generation in LPS is
optional to improve the acrotriangulation results.

After orthorectification, we produce an initial image mosaic, which is resampled
using the 1 m DOQ as a reference image in the AutoSync module in the Erdas™
software (Erdas 2010). This step improves the alignment of the mosaic with existing
imagery with little additional time involved, because the tie point collection in
AutoSync is automated.

We assessed the positional accuracies of two image mosaics, one in New Mexico
for a relative flat site of 173 ha with elevation differences of 14 m (257 UAS images),
and the other in Idaho for a topographically more diverse site of 116 ha with
elevation differences of 113 m (156 images). For the New Mexico mosaic, we
determined RMSEs between image coordinates and coordinates of 72 independent
check points (points with a known location) of visible features collected with a
Trimble Pro XR® differential GPS unit. For the Idaho mosaic, we obtained
coordinates for 591 random points from a 15 cm resolution orthoimage acquired
with an UltraCam X digital mapping camera from a piloted aircraft 1 week prior to
the UAS flights.
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2.3.2  Image classification

Developing classification maps from the UAS imagery presents certain challenges
compared to using imagery from higher quality mapping cameras. Although the
spatial resolution is very high, the spectral and radiometric resolutions obtained
from the low-cost consumer camera are relatively low, and the red (R), green (G) and
blue (B) bands are highly correlated. A transformation from the RGB space to the
intensity-hue-saturation (IHS) space results in reduced band inter-correlation and
three additional bands of image information. In the THS model, the intensity
component is separated from the colour information, and the hue and saturation
bands relate to how humans perceive colour (Jensen 2005). The use of IHS has been
shown to increase classification accuracies with UAS-acquired RGB imagery
(Laliberte and Rango 2008), and we routinely use this transformation approach as
a pre-processing step.

For the image classification, we used an object-based image analysis (OBIA)
approach and the software eCognition®™ 8 (Definiens 2009). OBIA has seen
increasing use over the last 8 years due to the ever increasing resolution of high-
resolution satellite imagery, the prevalence of digital aerial imagery, and the bridging
of remote sensing and geographic information system (GIS) functionality (Blaschke
2010). The advantages of an OBIA approach versus a pixel-based image analysis
approach are greater suitability for very high resolution imagery, the ability to
include spectral, spatial and contextual features, and the extraction of ecologically
meaningful image objects (Burnett and Blaschke 2003). The general OBIA workflow
consists of image segmentation followed by classification of image objects, although
in many cases an iterative process is used whereby classification is followed by
further segmentation at finer or coarser levels, additional classifications of the image
or portions of the image, and merging of objects and/or classes. All the rule sets and
algorithms applied to the image are contained in a process tree, which can be saved
and easily adapted to other images. This allows for automation or semi-automation
of the image analysis workflow.

For the UAS image classifications, the OBIA workflow was adapted to the size of
the area due to the limitations on the number of image objects that can be created in
eCognition. The limit is between two and five million objects, depending on number
of bands, bit depth and complexity of image objects. A typical UAS mosaic with an
extent of 1.6 km x 1 km has a file size of two gigabytes, and the maximum number
of objects can be exceeded quickly with fine-scale segmentation. Aside from the
object number limitation, it is often easier to develop a rule set on a small portion of
the image and apply it to additional image subsets than to classify the entire image.
With this approach, classification errors are easier to determine, edits are less time
consuming and variations in the vegetation communities can be addressed.

For the 5 ha area in New Mexico, the number of objects was not a limitation,
and a process tree was developed and applied to the entire image mosaic. For the
10 ha area in New Mexico, which consisted of 18 0.49 ha plots, we developed a
process tree on the first plot and applied it to the remaining plots using the
workspace feature in eCognition. This allowed for rapid application of the same
process tree to multiple individual images in the same work project. A combination
of rule-based classification for broader classes and nearest neighbour classification
for finer (species-level) classes was used. For the rule-based classification, specific
rules were used to define thresholds for the three classes shadow, bare ground and
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vegetation. For more detailed classifications at the species-level, field-collected
training samples were used for a nearest neighbour classification.

The two areas in Idaho were much larger (65 ha, 83 ha), and we developed the
process tree on a 0.25 ha plot surveyed on the ground and classified the image to the
structure group level (two bare classes, shrub, grass/forb, shadow) (Laliberte et al.
2010). Each of the image mosaics was segmented into tiles, and each tile was
segmented at the desired fine scale of analysis and classified using the process tree
from the small plot. Rule-based classification was used in these images. Either
method, applying the process tree to multiple small images, or tiling a large image
and processing each tile in sequence, allows for classifying relatively large UAS
image mosaics of sub-decimetre resolution in a semi-automated fashion.

Classification accuracies were assessed by creating error matrices and calculating
overall, user’s, and producer’s classification accuracies, and Kappa statistics
(Congalton and Green 2009). For the species-level classifications at the New Mexico
sites, the accuracy samples (n = 762 and n = 523) for the seven classes consisted of
image objects, and the accuracy assessments were conducted in eCognition. For the
larger sites in Idaho, we used a stratified random point sampling approach with 600
points for five classes, and the accuracy assessment was done in Erdas.

3. Results
3.1 Geometric accuracies

Our tests of the geometric accuracies resulted in an RMSE of 0.65 m for the New
Mexico image mosaic in the relatively flat area, and an RMSE of 1.14 m for the
Idaho image in the area with greater elevation differences (Figure 4). Taking into
account the GPS errors for the New Mexico image (84% of the GPS points were in
the 30-50 cm range), the approximate geometric accuracy was 1 m. The 15 cm
orthoimage used as a reference image for the Idaho site had an accuracy of 80 cm.
With this added uncertainty, the accuracy of the Idaho image was approximately
2 m. We acknowledge that the source data for geometric assessment differed, and
that neither the differential GPS data nor the coordinates from the orthoimage
represent ‘true ground’ coordinates. Nevertheless, the error assessments offered a
reasonable comparison with commonly used reference data, and demonstrated that
geometric accuracies can be expected to be lower in areas of greater terrain variation.
The AutoSync step in the image processing workflow (Figure 3) improved the
geometric accuracy from an RMSE of 1.64 for the initial mosaic output to an RMSE
of 0.65 for the New Mexico image, indicating that the AutoSync adjustment offers a
relatively quick and effective means of improving the geometric accuracy of the UAS
mosaics.

3.2 Classification approaches

The classification at the 10 ha New Mexico site was done to the species level using
training samples and a nearest neighbour classification. Because the process tree was
developed on one plot and applied to subsequent areas of the image, not only the
rule base but also the signatures for the training samples were transferred. Even
though most species occurred in all plots, some had significantly fewer shrubs than
others. Nevertheless, results indicated that the rules and signatures of the process
transferred well to other plots. Some edits were required for selected image objects in
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Figure 4. Geometric accuracies for two UAS mosaics acquired over an area in New Mexico
with 14 m elevation difference (a), and over an area in Idaho with 113 m elevation difference
(b). The points show differences in the X and Y direction assessed by (a) comparison with
check points measured with differentially corrected GPS, and by (b) comparison with
coordinates from a 15 cm resolution orthoimage acquired with an UltraCam X digital

mapping camera.

each plot, mostly for the litter and black grama classes, which were easily confused.
Editing required 5-10 min per plot. We were able to differentiate two shrub species
(mesquite, yucca), one sub-shrub (snakeweed) and two grass species (black grama,
dropseed) in addition to bare ground, litter, and shadow (Figure 5).
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For the larger Idaho sites, a classification at the structure group level (bare
ground, shrubs, grass/forb) was performed. Details of the results are shown in Figure
6. Clipping of the UAS mosaic eliminated areas at the image edges which have more
distortions. A segmentation into tiles (chessboard segmentation) was the framework
for application of the process tree developed on a small subset of the image with
representative vegetation (Figure 6(a)). A close-up view of four tiles demonstrates
the workflow and results (Figure 6(b)): the upper left tile has been segmented and

- Shadow
:l Bare

Litter
- Mesquite
:] Yucca
- Snakeweed
- Black grama
- Dropseed

0 5 10 20 Meters

Figure 5. Portion of UAS image mosaic acquired over rangelands in New Mexico (left) and
species-level classification (right). The area shown covers 70 m x 70 m.
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Figure 6. Classification of UAS image mosaic acquired in Idaho and object-based image
analysis workflow using a tiling process. (a) Image mosaic created from 156 images covering
116 ha; the red rectangle represents the 0.25 ha plot where the process tree for the classification
was developed. The blue grid represents the segmentation into tiles. (b) Detailed view of the
four upper left tiles in (a); the left upper tile has been classified, the right upper tile has been
segmented. (c) Final classification. The scale for (c) is identical to (a).
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classified, the right upper tile has been segmented to the scale at which the
classification will be performed. After that tile has been classified, the next tile is
segmented, and so on. The entire classification took 10 h to complete (Figure 6(c)).
Visual assessment indicated that the classification rules in the process tree were
applicable to the entire image. In contrast to the New Mexico image, no editing was
done in the Idaho image due to the larger area and much greater number of
segments.

3.3 Classification accuracies

The overall classification accuracies obtained with the UAS images are relatively
high (78-92%), considering that the images are true colour photography obtained
with a low-cost digital camera. The differences in the accuracy results reflect the
different objectives for development of classification maps, the extent of areas
mapped and the methods of accuracy assessments (Table 1). For the New Mexico
sites, the objective was to map relatively small areas at the species level, while for

Table 1. Classification accuracies obtained for object-based classifications of UAS image
mosaics acquired over arid rangelands at two sites in Idaho and two sites in New Mexico.

Producer’s User’s Number of Overall Kappa
Site and classes accuracy (%) accuracy (%) samples® accuracy (%)  index
Idaho site 1, 65 ha Total 600 88 0.82
Shadow 70 91 30
Bare bright 82 100 22
Bare dark 98 88 326
Grass/Forb 78 79 79
Shrubs 80 96 143
Idaho site 2, 83 ha Total 600 83 0.73
Shadow 85 95 22
Bare bright 87 100 31
Bare dark 85 91 354
Grass/Forb 83 62 70
Shrubs 80 75 123
NM site 1, 10 ha Total 762 78 0.64
Bare 78 75 70
Litter 76 95 115
Mesquite 99 81 165
Yucca 48 56 109
Snakeweed 46 82 113
Black grama 84 31 94
Dropseed 87 25 96
NM site 2, 5 ha Total 523 92 0.90
Bare bright 94 99 77
Bare dark 98 96 93
Mesquite 99 95 83
Snakeweed 85 96 44
Burrograss 97 95 82
Tobosa dense 83 75 77
Tobosa sparse 90 91 67

“For the two Idaho sites, the samples consisted of points, while for the two New Mexico sites, the samples
consisted of image segments.
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the Idaho sites, structure groups were mapped over relatively larger areas. We also
used two different methods of accuracy assessment. The training and accuracy
samples in the New Mexico sites were based on image segments. In the Idaho sites,
no training samples were used because classification was rule-based, and the
accuracy samples were based on points due to the much larger image extent. For
those reasons, direct comparisons of accuracies between all sites should not be
attempted.

The two Idaho sites can be compared, because the same classes were mapped
over areas of similar size, and both accuracy assessments consisted of 600 point
samples. While shrubs and bare ground had high accuracies in both sites, it was
apparent that the grass/forb class presented a greater challenge, resulting in lower
accuracies. This can be related to the time of image acquisition. In September, this
area of Idaho is relatively dry, and grasses contain more senescent than green
vegetation, resulting in confusion between grasses and shrubs and grasses and the
bare dark class.

Although the two New Mexico sites shared some of the same species, the
sites differed in terms of vegetation complexity and desired mapping objective. Site 2
(the 5 ha site) had spectrally more unique classes as well as a greater density of
training and test samples. This site had a much higher accuracy for snakeweed, and
considering that the bare class was split into bare bright and bare dark, the
accuracies were relatively high compared to the bare class in New Mexico site 1
(the 10 ha site). Another reason for the lower accuracy at site 1 was the inclusion of
the litter class. A specific mapping objective at site 1 was to determine the
separability between litter and other classes. As it turned out, litter was confused
with black grama grass, with some snakeweed plants that contained a mixture of
green and senescent plant material, and with dropseed, a bunchgrass that occurs in
very small patches. We did observe that at both New Mexico sites, mesquite had
comparable producers and users accuracies, very likely attributable to the fact that
mesquite is a relatively large shrub and less likely confused with other classes. Some
of the differences between users and producers accuracies for a given species at New
Mexico site 1 likely reflect the limit of separability between species and litter that can
be obtained with this type of imagery.

4. Discussion and conclusions

In this article, we have described a workflow for UAS-based rangeland remote
sensing, and reported on accuracy assessments of resulting orthomosaics and
classification maps. Approaches used in the processing of imagery from piloted aerial
photography missions can be applied, although the methods require adaptations to
the unique challenges that are often associated with UAS-acquired imagery: low
accuracy telemetry data for some UAS with low-cost GPS units, use of consumer
digital cameras and potentially large image mosaic files. The low accuracy of the
exterior orientation data obtained with small UAS usually preclude either direct
geoferencing used with higher accuracy imagery (Jacobsen 2002), or immediate input
into commercial photogrammetry software. This has led many to develop custom
applications for processing of UAS imagery (Du et al. 2008, Wilkinson et al. 2009,
Zhou 2009). Our approach is unique, because the PreSync module is aimed at
improving the exterior orientation values, and we take advantage of existing
software for tie point detection and final orthorectification. The PreSync workflow
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has been tested to date on 65 image mosaics of arid rangelands with few
distinguishing features. Considering the resolution difference between the UAS
images and the 1 m DOQ images used for matching, the process has performed well,
even though the DOQs have been up to 4 years older than the UAS images. This
time difference has not affected the processing of images from relatively slowly
changing rangelands. In areas of greater change over time, such as hayfields, we have
observed some difficulties in image matching.

Because our approach does not require much operator interaction, an
orthorectified image mosaic of 250 images can be obtained approximately 2 days
after the flight. The geometric accuracies of the image mosaics are suitable for
routine rangeland monitoring purposes, and allow for relating image information to
ground-based vegetation measurements.

While the low radiometric and spectral resolution of low-cost digital cameras has
its limits in terms of classification products, we have shown that by using a
conversion to the IHS space and OBIA, we can produce structure-level or species-
level thematic maps for rangeland assessment at relatively high accuracies. We have
shown in a related study that a plot-based remote sensing analysis of UAS images for
percent cover values was more efficient than a ground-based measurement approach
when more than eight plots were analysed (Laliberte et al. 2010). The segmentation
of a mosaic into smaller, manageable tiles that are subsequently processed with an
identical rule-base, offers an approach to classify large image files that would
otherwise exceed the maximum number of segments in the OBIA approach. While
we executed the tiling within an eCognition project using a chessboard segmentation,
the Enterprise version of the software can manage tiling and stitching on a server,
thus greatly increasing the processing ability.

The classification accuracies we obtained were highly dependent on the level of
detail, number of classes, size of area and specific mapping objectives, not unlike any
other mapping project. However, the results are promising and certainly show that a
UAS equipped with a low-cost digital camera can serve as a viable remote sensing
platform for rangeland assessment. While certain classes, such as litter, may be
difficult to distinguish given the camera used, structure level mapping is certainly
possible at relatively high accuracies. Remotely sensed estimates of non-vegetated
areas, shrub and grass cover are tied to soil and site stability, watershed function,
and biotic integrity, all rangeland attributes commonly monitored with ground-
based methods (Herrick et al. 2005). Using a UAS to obtain estimates of land cover
parameters at the landscape scale allows us to then focus on specific areas that
require ground measurements at a greater level of detail.

FAA rules for operating a UAS in the NAS currently have limitations for large-
area rangeland assessments with UAS (Rango and Laliberte 2010). The ability to fly
autonomously at relatively large distances from base operations is one of the
advantageous of UAS and could potentially be exploited by public land management
agencies to monitor vast and remote rangelands. However, current regulations (FAA
2008) limit UAS flights to within line-of-sight, requiring the use of visual observers
or chase aircraft. In April 2009, the small UAS aviation rulemaking committee
(ARC) submitted their recommendations to the FAA. Due to their low cost and
operating expenses, and suitability for remote sensing, small UAS are predicted to
have the fastest growth of any UAS. It is anticipated that small UAS will be
regulated separately from large UAS in the future, hopefully allowing for broader
use in natural resource applications.
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Our ongoing research is focused on investigating new sensors and novel image
analysis approaches for UAS-acquired imagery. Aside from evaluating classification
accuracies and refining methods for processing and analysing large image files, UAS
imagery acquired at the JER is currently being used to adapt field sampling to very
high resolution imagery, derive parameters for a deterministic hydrologic model,
support repetitive data analysis for a phenology pilot study, assist in evaluation of
disturbance experiments and contribute high resolution information for archae-
ological studies.

We are currently integrating into the UAS a multispectral camera that acquires
10-bit radiometric data in six narrow bands ranging from blue to near infrared.
This imagery will support radiometric correction and will allow for better species
differentiation. In addition, we are developing methods to fuse the optical data
with dense surface models generated from the UAS images for derivation of
vegetation heights. Plans for testing of additional sensors are underway. We
encourage the FAA to develop UAS regulations that will allow for applying image
processing and analysis methods developed on smaller areas to the landscape scale,
so that UAS-based remote sensing can be further integrated into rangeland
assessments.
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